Horo-tightness and total (absolute) curvatures in hyperbolic spaces

被引:1
作者
Solanes, G. [1 ]
Teufel, E. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
[2] Univ Stuttgart, Fachbereich Math, D-70550 Stuttgart, Germany
关键词
TAUT IMMERSIONS; CONVEX-BODIES; MANIFOLDS; SUBMANIFOLDS; HOROSPHERES; BOUNDARY; THEOREM; SURFACES; GEOMETRY; POINTS;
D O I
10.1007/s11856-012-0099-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Gau-Bonnet-type and Chern-Lashof-type formulas for immersions in hyperbolic space. Moreover we investigate the notion of tightness with respect to horospheres introduced by T.E. Cecil and P.J. Ryan. We introduce the notions of top-set and drop-set, and we prove fundamental properties of horo-tightness in hyperbolic spaces.
引用
收藏
页码:427 / 459
页数:33
相关论文
共 43 条
  • [1] [Anonymous], 1985, RES NOTES MATH
  • [2] [Anonymous], PERSPECTIVES MATH
  • [3] [Anonymous], NIEUW ARCHIEF WISK
  • [4] [Anonymous], 1958, Michigan Math. J.
  • [6] TIGHT-IMMERSIONS INTO MANIFOLDS WITHOUT CONJUGATE-POINTS
    BOLTON, J
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1982, 33 (130) : 159 - 167
  • [7] Brickell F., 1974, J DIFFER GEOM, V9, P177
  • [8] Bryant R.L., 1987, ASTERISQUE
  • [9] Horo-tight spheres in hyperbolic space
    Buosi, Marcelo
    Izumiya, Shyuichi
    Soares Ruas, Maria Aparecida
    [J]. GEOMETRIAE DEDICATA, 2011, 154 (01) : 9 - 26
  • [10] Total absolute horospherical curvature of submanifolds in hyperbolic space
    Buosi, Marcelo
    Izumiya, Shyuichi
    Soares Ruas, Maria Aparecida
    [J]. ADVANCES IN GEOMETRY, 2010, 10 (04) : 603 - 620