Sparse Distributed Learning Based on Diffusion Adaptation

被引:181
作者
Di Lorenzo, Paolo [1 ]
Sayed, Ali H. [2 ]
机构
[1] Univ Roma La Sapienza, DIET, I-00184 Rome, Italy
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Adaptive networks; compressive sensing; diffusion LMS; distributed estimation; sparse vector; LEAST-MEAN-SQUARES; LMS; STRATEGIES; FORMULATION; NETWORKS; SIGNALS; RLS;
D O I
10.1109/TSP.2012.2232663
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes diffusion LMS strategies for distributed estimation over adaptive networks that are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, to enhance the detection of sparsity via a diffusive process over the network. The resulting algorithms endow networks with learning abilities and allow them to learn the sparse structure from the incoming data in real-time, and also to track variations in the sparsity of the model. We provide convergence and mean-square performance analysis of the proposed method and show under what conditions it outperforms the unregularized diffusion version. We also show how to adaptively select the regularization parameter. Simulation results illustrate the advantage of the proposed filters for sparse data recovery.
引用
收藏
页码:1419 / 1433
页数:15
相关论文
共 51 条
  • [1] Online Adaptive Estimation of Sparse Signals: Where RLS Meets the l1-Norm
    Angelosante, Daniele
    Bazerque, Juan Andres
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (07) : 3436 - 3447
  • [2] [Anonymous], IEEE SIGNAL PROCESSI
  • [3] SPARLS: The Sparse RLS Algorithm
    Babadi, Behtash
    Kalouptsidis, Nicholas
    Tarokh, Vahid
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (08) : 4013 - 4025
  • [4] Distributed Spectrum Sensing for Cognitive Radio Networks by Exploiting Sparsity
    Bazerque, Juan Andres
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1847 - 1862
  • [5] Benesty J, 2002, INT CONF ACOUST SPEE, P1881
  • [6] A new class of incremental gradient methods for least squares problems
    Bertsekas, DP
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) : 913 - 926
  • [7] From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
    Bruckstein, Alfred M.
    Donoho, David L.
    Elad, Michael
    [J]. SIAM REVIEW, 2009, 51 (01) : 34 - 81
  • [8] Stable signal recovery from incomplete and inaccurate measurements
    Candes, Emmanuel J.
    Romberg, Justin K.
    Tao, Terence
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) : 1207 - 1223
  • [9] Enhancing Sparsity by Reweighted l1 Minimization
    Candes, Emmanuel J.
    Wakin, Michael B.
    Boyd, Stephen P.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) : 877 - 905
  • [10] Modeling Bird Flight Formations Using Diffusion Adaptation
    Cattivelli, Federico S.
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (05) : 2038 - 2051