Parallel Cat Swarm Optimization

被引:104
作者
Tsai, Pei-Wei [1 ]
Pan, Jeng-Shyang [1 ]
Chen, Shyi-Ming [2 ,3 ]
Liao, Bin-Yih [1 ]
Hao, Szu-Ping [4 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung 807, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei, Taiwan
[3] Jinwen Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei, Taiwan
[4] Natl Kaohsiung Univ Appl Sci, Dept Mech Engn, Kaohsiung, Taiwan
来源
PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2008年
关键词
evolutionary; swarm intelligent; computational intelligence; optimization; parallel swarm;
D O I
10.1109/ICMLC.2008.4620980
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate a parallel structure of Cat Swarm Optimization (CSO) in this paper, and we call it Parallel Cat Swarm Optimization (PCSO). In the experiments, we compare Particle Swarm Optimization (PSO) with CSO and PCSO. The experimental results indicate that both CSO and PCSO perform well. Moreover, PCSO is an effective scheme to improve the convergent speed of Cat Swarm Optimization in case the population size is small and the whole iteration is less.
引用
收藏
页码:3328 / +
页数:2
相关论文
共 12 条
[1]  
Abramson D., 1991, PARALLEL GENETIC ALG
[2]  
Chang JF, 2005, J INF SCI ENG, V21, P809
[3]   Ant colony system with communication strategies [J].
Chu, SC ;
Roddick, JF ;
Pan, JS .
INFORMATION SCIENCES, 2004, 167 (1-4) :63-76
[4]  
CHU SC, 2009, LECT NOTES ARTIF INT, V4099, P854
[5]  
Chu SC, 2007, INT J INNOV COMPUT I, V3, P163
[6]  
Dorigo M., 1997, IEEE Transactions on Evolutionary Computation, V1, P53, DOI 10.1109/4235.585892
[7]  
GOLDBERG DE, 1989, GENETIC ALGORITHM SE
[8]  
IWASAKI N, 2005, INT J INNOVATIVE COM, V1
[9]  
Kim K, 2006, INT J INNOV COMPUT I, V2, P41
[10]  
Maeda Y, 2005, INT J INNOV COMPUT I, V1, P95