Traveling Waves in Elastic Rods with Arbitrary Curvature and Torsion

被引:1
作者
Ablowitz, M. J. [6 ]
Barone, V. [4 ,5 ]
De Lillo, S. [2 ,3 ]
Sommacal, M. [1 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy
[3] Univ Perugia, Dipartimento Matemat & Informat, I-06100 Perugia, Italy
[4] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy
[5] Scuola Normale Super Pisa, Pisa, Italy
[6] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Continuum mechanics; Elastic rod; Dynamic Kirchhoff equations; Polymeric chains; Conformational soliton; Protein folding; MOLECULAR-DYNAMICS SIMULATION; HUMAN PRION PROTEIN; CONFORMATION CHANGES; MODEL; PROPAGATION; SOLITON; TRANSPORT; CHAINS; DOMAIN; PH;
D O I
10.1007/s00332-012-9136-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamic Kirchhoff equations, describing a thin elastic rod of infinite length, are considered in connection with the study of the conformations of polymeric chains. A novel special traveling wave solution that can be interpreted as a conformational soliton propagating at constant speed is obtained, featuring arbitrary non-constant curvature and torsion of the rod, in the simple case of constant cross-section, homogeneous density and elastic isotropy. This traveling wave corresponds to a specific constraint on the twist-to-bend ratio of the constant stiffness parameters, which in turn appears to be compatible with the experimental evidence for the mechanical properties of real polymeric chains. Due to such a constraint, the square of the velocity of the solitary wave is directly proportional to the bending stiffness and inversely proportional to the density and to the principal momentum of inertia of the rod. Several applications to the study of conformational changes in polymeric chains are given.
引用
收藏
页码:1013 / 1040
页数:28
相关论文
共 41 条
[1]  
[Anonymous], 2009, Theory of Elasticity
[2]  
[Anonymous], 1968, HDB MATH FUNCTIONS
[3]  
Antman S. S., 1995, NONLINEAR PROBLEMS E
[4]   EXISTENCE OF ENERGY MINIMUMS FOR THIN ELASTIC RODS IN STATIC HELICAL CONFIGURATIONS [J].
Argeri, M. ;
Barone, V. ;
De Lillo, S. ;
Lupo, G. ;
Sommacal, M. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (03) :698-711
[5]   Elastic rods in life- and material-sciences: A general integrable model [J].
Argeri, M. ;
Barone, V. ;
De Lillo, S. ;
Lupo, G. ;
Sommacal, M. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (13) :1031-1049
[6]   Effect of conformations on charge transport in a thin elastic tube [J].
Balakrishnan, Radha ;
Dandoloff, Rossen .
NONLINEARITY, 2008, 21 (01) :1-11
[7]   Nonlinear dynamics of secondary protein folding [J].
Berloff, NG .
PHYSICS LETTERS A, 2005, 337 (4-6) :391-396
[8]  
CARERI G, 1973, COOPERATIVE PHENOMEN, P391
[9]   Toy model studies of soliton-mediated protein folding and conformation changes [J].
Caspi, S ;
Ben-Jacob, E .
EUROPHYSICS LETTERS, 1999, 47 (04) :522-527
[10]   Conformation changes and folding of proteins mediated by Davydov's soliton [J].
Caspi, S ;
Ben-Jacob, E .
PHYSICS LETTERS A, 2000, 272 (1-2) :124-129