An MDL Framework for Sparse Coding and Dictionary Learning

被引:35
作者
Ramirez, Ignacio [1 ]
Sapiro, Guillermo [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Classification; denoising; dictionary learning; minimum description length principle (MDL); low-rank matrix completion; sparse coding; NONPARAMETRIC DETECTION; SIGNALS; REPRESENTATION; INFORMATION; SHRINKAGE; ALGORITHM; SELECTION;
D O I
10.1109/TSP.2012.2187203
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The power of sparse signal modeling with learned overcomplete dictionaries has been demonstrated in a variety of applications and fields, from signal processing to statistical inference and machine learning. However, the statistical properties of these models, such as underfitting or overfitting given sets of data, are still not well characterized in the literature. As a result, the success of sparse modeling depends on hand-tuning critical parameters for each data and application. This work aims at addressing this by providing a practical and objective characterization of sparse models by means of the minimum description length (MDL) principle-a well-established information-theoretic approach to model selection in statistical inference. The resulting framework derives a family of efficient sparse coding and dictionary learning algorithms which, by virtue of the MDL principle, are completely parameter free. Furthermore, such framework allows to incorporate additional prior information to existing models, such as Markovian dependencies, or to define completely new problem formulations, including in the matrix analysis area, in a natural way. These virtues will be demonstrated with parameter-free algorithms for the classic image denoising and classification problems, and for low-rank matrix recovery in video applications. However, the framework is not limited to this imaging data, and can be applied to a wide range of signal and data types and tasks.
引用
收藏
页码:2913 / 2927
页数:15
相关论文
共 50 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
[Anonymous], 2006, Elements of Information Theory
[4]  
[Anonymous], 2007, The Minimum Description Length Principle
[5]   The minimum description length principle in coding and modeling [J].
Barron, A ;
Rissanen, J ;
Yu, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2743-2760
[6]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[7]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[8]  
Candes E. J., 2006, P INT C MATH AUG, V3
[9]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[10]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61