MULTILEVEL QUADRATURE FOR ELLIPTIC PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS IN CASE OF POLYGONAL APPROXIMATIONS OF CURVED DOMAINS

被引:8
|
作者
Griebel, Michael [1 ,2 ]
Harbrecht, Helmut [3 ]
Multerer, Michael D. [4 ]
机构
[1] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
[2] Schloss Birlinghoven, Fraunhofer Inst Algorithms & Sci Comp SCAI, D-53754 St Augustin, Germany
[3] Univ Basel, Dept Math & Informat, CH-4051 Basel, Switzerland
[4] Univ Svizzera Italiana, Inst Computat Sci, CH-6900 Lugano, Switzerland
关键词
parametric partial differential equations; multilevel quadrature; variational crimes; STOCHASTIC COLLOCATION METHOD; CONVERGENCE-RATES; PDES; INTEGRATION;
D O I
10.1137/18M1236265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multilevel quadrature methods for parametric operator equations such as the multilevel (quasi-) Monte Carlo method resemble a sparse tensor product approximation between the spatial variable and the parameter. We employ this fact to reverse the multilevel quadrature method by applying differences of quadrature rules to finite element discretizations of increasing resolution. Besides being algorithmically more efficient if the underlying quadrature rules are nested, this way of performing the sparse tensor product approximation enables the easy use of nonnested and even adaptively refined finite element meshes. We moreover provide a rigorous error and regularity analysis addressing the variational crimes of using polygonal approximations of curved domains and numerical quadrature of the bilinear form. Our results facilitate the construction of efficient multilevel quadrature methods based on deterministic high order quadrature rules for the stochastic parameter. Numerical results in three spatial dimensions are provided to illustrate the approach.
引用
收藏
页码:684 / 705
页数:22
相关论文
共 39 条
  • [1] A numerical technique for linear elliptic partial differential equations in polygonal domains
    Hashemzadeh, P.
    Fokas, A. S.
    Smitheman, S. A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2175):
  • [2] MULTILEVEL DESIGNED QUADRATURE FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUTS
    Keshavarzzadeh, Vahid
    Kirby, Robert M.
    Narayan, Akil
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A1412 - A1440
  • [3] A MULTILEVEL APPROACH TOWARDS UNBIASED SAMPLING OF RANDOM ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Li, Xiaoou
    Liu, Jingchen
    Xu, Shun
    ADVANCES IN APPLIED PROBABILITY, 2018, 50 (04) : 1007 - 1031
  • [4] The second order perturbation approach for elliptic partial differential equations on random domains
    Harbrecht, Helmut
    Peters, Michael D.
    APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 159 - 171
  • [5] Reproducing Kernel Hilbert Spaces for Parametric Partial Differential Equations
    Griebel, Michael
    Rieger, Christian
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 111 - 137
  • [6] Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM
    Harbrecht, Helmut
    Schmidlin, Marc
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2022, 10 (04): : 1619 - 1650
  • [7] A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients
    Barth, Andrea
    Stein, Andreas
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1707 - 1743
  • [8] COMPUTABLE ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH ROUGH STOCHASTIC DATA
    Hall, Eric Joseph
    Hoel, Hakon
    Sandberg, Mattias
    Szepessy, Anders
    Tempone, Raul
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06): : A3773 - A3807
  • [9] A DGFEM for nondivergence form elliptic equations with Cordes coefficients on curved domains
    Kawecki, Ellya L.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (05) : 1717 - 1744
  • [10] A Posteriori Error Estimation for Elliptic Partial Differential Equations with Small Uncertainties
    Guignard, Diane
    Nobile, Fabio
    Picasso, Marco
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (01) : 175 - 212