Observation of chiral edge states with neutral fermions in synthetic Hall ribbons

被引:633
作者
Mancini, M. [1 ]
Pagano, G. [1 ]
Cappellini, G. [2 ]
Livi, L. [2 ]
Rider, M. [3 ,4 ]
Catani, J. [2 ,5 ]
Sias, C. [2 ,6 ]
Zoller, P. [3 ,4 ]
Inguscio, M. [1 ,2 ,6 ]
Dalmonte, M. [3 ,4 ]
Fallani, L. [1 ,2 ]
机构
[1] Univ Florence, Dept Phys & Astron, I-50019 Sesto Fiorentino, Italy
[2] European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, Italy
[3] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[4] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[5] CNR, INO, Sez Sesto Fiorentino, I-50019 Sesto Fiorentino, Italy
[6] Ist Nazl Ric Metrol INRIM, I-10135 Turin, Italy
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
MAGNETIC-FIELDS; QUANTUM; REALIZATION; ATOMS; MODEL; GAS;
D O I
10.1126/science.aaa8736
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chiral edge states are a hallmark of quantum Hall physics. In electronic systems, they appear as a macroscopic consequence of the cyclotron orbits induced by a magnetic field, which are naturally truncated at the physical boundary of the sample. Here we report on the experimental realization of chiral edge states in a ribbon geometry with an ultracold gas of neutral fermions subjected to an artificial gauge field. By imaging individual sites along a synthetic dimension, encoded in the nuclear spin of the atoms, we detect the existence of the edge states and observe the edge-cyclotron orbits induced during quench dynamics. The realization of fermionic chiral edge states opens the door for edge state interferometry and the study of non-Abelian anyons in atomic systems.
引用
收藏
页码:1510 / 1513
页数:4
相关论文
共 26 条
[1]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[2]   Observation of chiral currents with ultracold atoms in bosonic ladders [J].
Atala, Marcos ;
Aidelsburger, Monika ;
Lohse, Michael ;
Barreiro, Julio T. ;
Paredes, Belen ;
Bloch, Immanuel .
NATURE PHYSICS, 2014, 10 (08) :588-593
[3]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[4]   Quantum Simulation of an Extra Dimension [J].
Boada, O. ;
Celi, A. ;
Latorre, J. I. ;
Lewenstein, M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[5]   Ultracold Fermi gases with emergent SU(N) symmetry [J].
Cazalilla, Miguel A. ;
Rey, Ana Maria .
REPORTS ON PROGRESS IN PHYSICS, 2014, 77 (12)
[6]   Synthetic Gauge Fields in Synthetic Dimensions [J].
Celi, A. ;
Massignan, P. ;
Ruseckas, J. ;
Goldman, N. ;
Spielman, I. B. ;
Juzeliunas, G. ;
Lewenstein, M. .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[7]   Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas [J].
Cheuk, Lawrence W. ;
Sommer, Ariel T. ;
Hadzibabic, Zoran ;
Yefsah, Tarik ;
Bakr, Waseem S. ;
Zwierlein, Martin W. .
PHYSICAL REVIEW LETTERS, 2012, 109 (09)
[8]   Colloquium: Artificial gauge potentials for neutral atoms [J].
Dalibard, Jean ;
Gerbier, Fabrice ;
Juzeliunas, Gediminas ;
Oehberg, Patrik .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1523-1543
[9]   An Aharonov-Bohm interferometer for determining Bloch band topology [J].
Duca, L. ;
Li, T. ;
Reitter, M. ;
Bloch, I. ;
Schleier-Smith, M. ;
Schneider, U. .
SCIENCE, 2015, 347 (6219) :288-292
[10]   Light-induced gauge fields for ultracold atoms [J].
Goldman, N. ;
Juzeliunas, G. ;
Oehberg, P. ;
Spielman, I. B. .
REPORTS ON PROGRESS IN PHYSICS, 2014, 77 (12)