On the Stability of a Class of Cosine Type Functional Equations

被引:0
|
作者
Rassias, J. M. [1 ]
Zeglami, D. [2 ]
Charifi, A. [3 ]
机构
[1] Univ Athens, Pedag Dept Educ, Math & Informat Sect, Athens, Greece
[2] Moulay Ismail Univ, ENSAM, Dept Math, BP 15290 Al Mansour, Meknes, Morocco
[3] Ibn Tofail Univ, Fac Sci, Dept Math, BP 133, Kenitra 14000, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2019年 / 37卷 / 02期
关键词
Stability; Superstability; D'Alembert's equation; Trigonornetric functional equation; SUPERSTABILITY;
D O I
10.5269/bspm.v37i2.29563
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to investigate the stability problem for the pexiderized trigonometric functional equation f(1)(xy) + f(2)(x sigma(y)) - 2(g1)(x)(g2)(y), x, y is an element of G (E) where G is an arbitrary group, f(1),f(2),g(1) and g(2) are complex valued functions on C and sigma is an involution of G. Results of this paper also can be extended to the setting of monoids (that is, a semigroup with identity) that need not be abelian.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 50 条