On the Stability of a Class of Cosine Type Functional Equations

被引:0
|
作者
Rassias, J. M. [1 ]
Zeglami, D. [2 ]
Charifi, A. [3 ]
机构
[1] Univ Athens, Pedag Dept Educ, Math & Informat Sect, Athens, Greece
[2] Moulay Ismail Univ, ENSAM, Dept Math, BP 15290 Al Mansour, Meknes, Morocco
[3] Ibn Tofail Univ, Fac Sci, Dept Math, BP 133, Kenitra 14000, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2019年 / 37卷 / 02期
关键词
Stability; Superstability; D'Alembert's equation; Trigonornetric functional equation; SUPERSTABILITY;
D O I
10.5269/bspm.v37i2.29563
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to investigate the stability problem for the pexiderized trigonometric functional equation f(1)(xy) + f(2)(x sigma(y)) - 2(g1)(x)(g2)(y), x, y is an element of G (E) where G is an arbitrary group, f(1),f(2),g(1) and g(2) are complex valued functions on C and sigma is an involution of G. Results of this paper also can be extended to the setting of monoids (that is, a semigroup with identity) that need not be abelian.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 50 条
  • [21] Superstability problem for a large class of functional equations
    Zeglami D.
    Charifi A.
    Kabbaj S.
    Afrika Matematika, 2016, 27 (3-4) : 469 - 484
  • [22] On the stability of functional equations
    Moszner, Zenon
    AEQUATIONES MATHEMATICAE, 2009, 77 (1-2) : 33 - 88
  • [23] On the stability of functional equations
    Zenon Moszner
    Aequationes mathematicae, 2009, 77 : 33 - 88
  • [24] Khasminskii-type theorem for a class of stochastic functional differential equations
    Ma, Li
    Wang, Ru
    Yan, Liangqing
    OPEN MATHEMATICS, 2022, 20 (01): : 689 - 706
  • [25] ON THE SUPER-STABILITY OF TRIGONOMETRIC HILBERT-VALUED FUNCTIONAL EQUATIONS
    Rezaei, H.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (01): : 249 - 258
  • [26] Superstability of a multidimensional pexiderized cosine functional equation
    Kitisin, Nataphan
    Sanyatit, Preechaya
    SCIENCEASIA, 2021, 47 (02): : 251 - 256
  • [27] ON THE SUPERSTABILITY OF THE p-RADICAL SINE TYPE FUNCTIONAL EQUATIONS
    Kim, Gwang Hui
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2021, 28 (04): : 387 - 398
  • [28] On the stability of the generalized mixed trigonometric functional equations
    Zeglami, Driss
    Kabbaj, Samir
    Chari, Ahmed
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2014, 5 (04) : 209 - 222
  • [29] A SPECIAL CLASS OF FUNCTIONAL EQUATIONS
    Charifi, Ahmed
    Lukasik, Radoslaw
    Zeglami, Driss
    MATHEMATICA SLOVACA, 2018, 68 (02) : 397 - 404
  • [30] Perturbations of Wilson type and mixed type functional equations
    Jung, Yong-Soo
    Chang, Ick-Soon
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2007, 9 (01) : 103 - 116