Analysis of Dynamical Behavior in Hyper-chaotic Complex System

被引:0
作者
Liang Xue-feng [1 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
来源
Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET) | 2016年 / 77卷
关键词
Hyper-chaotic complex Lu system; dynamical behaviour; Modified projective synchronization; SYNCHRONIZATION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the complex dynamics of fractional-order hyper-chaotic complex Lu system via numerical simulations. It is found that the variation of both the system parameters and the fractional order can induce bifurcations, and the parameter ranges of chaos are different. Also, a controller of modified projective synchronization (MPS) is proposed, which can effectively achieve modified projective synchronization in a class of high dimensional fractional-order systems.
引用
收藏
页码:137 / 140
页数:4
相关论文
共 7 条
[1]  
Arena P., 1997, P ECCTD BUD, P1259
[2]   Chaos synchronization of the Chua system with a fractional order [J].
Li, CP ;
Deng, WH ;
Xu, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 360 (02) :171-185
[3]  
Lu JG, 2007, CHAOS SOLITON FRACT, V27, P13
[4]  
Magin RL, 2004, FRACTIONAL CALCULUS, V32, P371
[5]   Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system [J].
Mahmoud, Gamal M. ;
Aly, Shahan A. ;
Al-Kashif, M. A. .
NONLINEAR DYNAMICS, 2008, 51 (1-2) :171-181
[6]   General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters [J].
Tang, Yang ;
Fang, Jian-an .
PHYSICS LETTERS A, 2008, 372 (11) :1816-1826
[7]  
Vinagre B.M., 2002, P 41 IEEE C DEC CONT, VVolume 1, P214