Harmonic morphisms between semi-riemannian manifolds

被引:0
|
作者
Fuglede, B [1 ]
机构
[1] UNIV COPENHAGEN,INST MATH,DK-2100 COPENHAGEN O,DENMARK
来源
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA | 1996年 / 21卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A smooth map f: M --> N between semi-riemannian manifolds is called a harmonic morphism if f pulls back harmonic functions (i.e., local solutions of the Laplace-Beltrami equation) on N into harmonic functions on M. It is shown that a harmonic morphism is the same as a harmonic map which is moreover horizontally weakly conformal, these two notions being likewise carried over from the riemannian case. Additional characterizations of harmonic morphisms are given. The case where M and N have the same dimension n is studied in detail. When n = 2 and the metrics on M and N are indefinite, the harmonic morphisms are characterized essentially by preserving characteristics.
引用
收藏
页码:31 / 50
页数:20
相关论文
共 50 条
  • [31] Lightlike Submanifolds of Metallic Semi-Riemannian Manifolds
    Perktas, Selcen Yuksel
    Erdogan, Feyza Esra
    Acet, Bilal Eftal
    FILOMAT, 2020, 34 (06) : 1781 - 1794
  • [32] Projective Vector Fields on Semi-Riemannian Manifolds
    Alshehri, Norah
    Guediri, Mohammed
    MATHEMATICS, 2024, 12 (18)
  • [33] On the geodesical connectedness for a class of semi-Riemannian manifolds
    Giannoni, F
    Piccione, P
    Sampalmieri, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) : 444 - 476
  • [34] ON COMPLETENESS OF CERTAIN FAMILIES OF SEMI-RIEMANNIAN MANIFOLDS
    ROMERO, A
    SANCHEZ, M
    GEOMETRIAE DEDICATA, 1994, 53 (01) : 103 - 117
  • [35] Semi-Riemannian manifolds with a doubly warped structure
    Gutierrez, Manuel
    Olea, Benjamin
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (01) : 1 - 24
  • [36] CHARACTERIZATIONS OF GENERIC SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS
    PELLETIER, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (13): : 651 - 654
  • [37] Extending Translating Solitons in Semi-Riemannian Manifolds
    Kocakusakli, Erdem
    Ortega, Miguel
    LORENTZIAN GEOMETRY AND RELATED TOPICS, GELOMA 2016, 2017, 211 : 153 - 168
  • [38] Lightlike Osserman submanifolds of semi-Riemannian manifolds
    Atindogbe C.
    Lungiambudila O.
    Tossa J.
    Afrika Matematika, 2011, 22 (2) : 129 - 151
  • [39] On totally umbilic submanifolds of semi-Riemannian manifolds
    Perlick, Volker
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E511 - E518
  • [40] Lightlike hypersurfaces of metallic semi-Riemannian manifolds
    Acet, Bilal Eftal
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (12)