UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture

被引:12
|
作者
Akada, Hiroyasu [1 ,2 ]
Wang, Jian [1 ]
Shimada, Soshi [1 ]
Takahashi, Masaki [2 ]
Theobalt, Christian [1 ]
Golyanik, Vladislav [1 ]
机构
[1] Max Planck Inst Informat, SIC, Saarbrucken, Germany
[2] Keio Univ, Tokyo, Japan
来源
COMPUTER VISION - ECCV 2022, PT VI | 2022年 / 13666卷
基金
日本科学技术振兴机构;
关键词
Egocentric 3D human pose estimation; Naturalistic data;
D O I
10.1007/978-3-031-20068-7_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present UnrealEgo, i.e., a new large-scale naturalistic dataset for egocentric 3D human pose estimation. UnrealEgo is based on an advanced concept of eyeglasses equipped with two fisheye cameras that can be used in unconstrained environments. We design their virtual prototype and attach them to 3D human models for stereo view capture. We next generate a large corpus of human motions. As a consequence, UnrealEgo is the first dataset to provide in-the-wild stereo images with the largest variety of motions among existing egocentric datasets. Furthermore, we propose a new benchmark method with a simple but effective idea of devising a 2D keypoint estimation module for stereo inputs to improve 3D human pose estimation. The extensive experiments show that our approach outperforms the previous state-of-the-art methods qualitatively and quantitatively. UnrealEgo and our source codes are available on our project web page (https://4dqvanpiinf.mpg.def/UnrealEgo/).
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Illumination-invariant Robust Multiview 3D Human Motion Capture
    Robertini, Nadia
    Bernard, Florian
    Xu, Weipeng
    Theobalt, Christian
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 1661 - 1670
  • [2] New system for 3D motion capture
    Mahoney, DP
    COMPUTER GRAPHICS WORLD, 1996, 19 (01) : 19 - 20
  • [3] Dense 3D Motion Capture for Human Faces
    Furukawa, Yasutaka
    Ponce, Jean
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 1674 - +
  • [4] A New Algorithm for Human Motion Capture via 3D Active Contours
    Wan, Chengkai
    Yuan, Baozong
    Miao, Zhenjiang
    ICDIP 2009: INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, PROCEEDINGS, 2009, : 112 - 116
  • [5] Aria Digital Twin: A New Benchmark Dataset for Egocentric 3D Machine Perception
    Pan, Xiaqing
    Charron, Nicholas
    Yang, Yongqian
    Peters, Scott
    Whelan, Thomas
    Kong, Chen
    Parkhi, Omkar
    Newcombe, Richard
    Ren, Yuheng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 20076 - 20086
  • [6] Motion capture for 3D databases -: Overview of methods for motion capture in 3D databases
    Lupinek, Dalibor
    Drahansky, Martin
    SIGMAP 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA APPLICATIONS, 2008, : 99 - 104
  • [7] Evaluating 3D Human Motion Capture on Mobile Devices
    Reimer, Lara Marie
    Kapsecker, Maximilian
    Fukushima, Takashi
    Jonas, Stephan M.
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [8] 4D Human Body Capture from Egocentric Video via 3D Scene Grounding
    Liu, Miao
    Yang, Dexin
    Zhang, Yan
    Cui, Zhaopeng
    Rehg, James M.
    Tang, Siyu
    2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 930 - 939
  • [9] A Clustering Compression Method for 3D Human Motion Capture Data
    Zhou, Kai
    Tian, Feng
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2014, 14 (08): : 1 - 4
  • [10] MoCapDeform: Monocular 3D Human Motion Capture in Deformable Scenes
    Li, Zhi
    Shimada, Soshi
    Schiele, Bernt
    Theobalt, Christian
    Golyanik, Vladislav
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 1 - 11