On Non-Abelian Tensor Analogues of 3-Engel and 4-Engel Groups

被引:0
作者
Hokmabadi, Azam [1 ]
Mohammadzadeh, Elaheh [1 ]
Golmakani, Hanieh [2 ]
Mohammadzadeh, Fahimeh [1 ]
机构
[1] Payame Noor Univ, Dept Math, Fac Sci, Tehran 193954697, Iran
[2] Islamic Azad Univ, Dept Math, Fac Sci, Mashhad, Iran
关键词
Engel group; Nilpotent group; Non-abelian tensor square; 20F45; 20F99; PRODUCTS;
D O I
10.1080/00927872.2014.946140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group G is said to be an n(circle times)-Engel, if [y, (n-1)x]circle times x=1 for all x, yG, and we say a group G is tensor nilpotent of class at most n, if . In this article, we show that if G is a 3(circle times)-Engel group, thenx, x(y)is tensor nilpotent of class at most 2, for all x, yG. We also prove that if G is a 4(circle times)-Engel group and G circle times G is torsion-free, thenx, x(y)is tensor nilpotent of class at most 4, for all x, y is an element of G.
引用
收藏
页码:4415 / 4421
页数:7
相关论文
共 11 条
  • [1] On subgroups related to the tensor center
    Biddle, DP
    Kapp, LC
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2003, 45 : 323 - 332
  • [2] SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS
    BROWN, R
    JOHNSON, DL
    ROBERTSON, EF
    [J]. JOURNAL OF ALGEBRA, 1987, 111 (01) : 177 - 202
  • [3] TENSOR-PRODUCTS AND Q-CROSSED MODULES
    ELLIS, GJ
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 243 - 258
  • [4] Golod E. S., 1969, AM MATH SOC T SER, V48, P83
  • [5] 4-Engel groups are locally nilpotent
    Havas, G
    Vaughan-Lee, MR
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (04) : 649 - 682
  • [6] Heineken H., 1961, Ill. J. Math., V5, P681
  • [7] Kappe L.-C., 1972, B AUST MATH SOC, V7, P391
  • [8] Levi F. W., 1942, J.Indian Math. Soc., V6, P87
  • [9] McDermott A., 1998, PhD thesis
  • [10] On nonabelian tensor analogues of 2-Engel conditions
    Moravec, P
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2005, 47 : 77 - 86