Effect of Dipole-Dipole Interaction on Entanglement

被引:0
作者
Becir, A. [1 ]
Messikh, A. [1 ]
Wahiddin, M. R. B. [2 ]
机构
[1] IIUM, Dept Computat & Theoret Sci, Kuala Lumpur 53100, Malaysia
[2] MIMOS Berhad, Kuala Lumpur 57000, Malaysia
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2007年 / 1卷 / 01期
关键词
Spin squeezing; Entanglement in Dicke model; Negativity criterion;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The influence of the dipole-dipole interaction on the entanglement and spin squeezing in the two-level atom Dicke model driven by a coherent field and damped by a broad band squeezed vacuum is discussed. We use the negativity criterion to measure the degree of entanglement. It is shown that in the absence of a squeezed vacuum, weak dipole-dipole interaction enhances entanglement. However, in the presence of a squeezed vacuum and for intense dipole-dipole interaction, the Dicke model evolves to a two-atom squeezed state which is maximally entangled for N >> 1. We also compare the criterion of negativity with spin squeezing.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 24 条
[1]  
BANERJEE A, 2001, QUANTPH0110032
[2]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[3]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[4]   QUANTUM INFORMATION AND COMPUTATION [J].
BENNETT, CH .
PHYSICS TODAY, 1995, 48 (10) :24-30
[5]   Separability of very noisy mixed states and implications for NMR Quantum computing [J].
Braunstein, SL ;
Caves, CM ;
Jozsa, R ;
Linden, N ;
Popescu, S ;
Schack, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (05) :1054-1057
[6]   Distributed quantum computation over noisy channels [J].
Cirac, JI ;
Ekert, AK ;
Huelga, SF ;
Macchiavello, C .
PHYSICAL REVIEW A, 1999, 59 (06) :4249-4254
[7]   Coherent eavesdropping strategies for the four state quantum cryptography protocol [J].
Cirac, JI ;
Gisin, N .
PHYSICS LETTERS A, 1997, 229 (01) :1-7
[8]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261
[9]   Optimal local implementation of nonlocal quantum gates [J].
Eisert, J ;
Jacobs, K ;
Papadopoulos, P ;
Plenio, MB .
PHYSICAL REVIEW A, 2000, 62 (05) :052317-052311
[10]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663