Utilizing a new soil effective temperature scheme and archived satellite microwave brightness temperature data to estimate surface soil moisture in the Nagqu region, Tibetan Plateau of China

被引:2
作者
Tian, Hui [1 ]
Iqbal, Mudassar [1 ,2 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Land Surface Proc & Climate Change Cold &, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
soil effective temperature; archived AMSR-E brightness temperature; CLM4.5 soil temperature output; Cumulative Distribution Function (CDF) matching; surface soil moisture; Tibetan Plateau; SOUTHERN GREAT-PLAINS; L-BAND; AMSR-E; BOUNDARY-LAYER; RETRIEVAL; PARAMETERIZATION; ALGORITHM; RADIOMETRY; VEGETATION; FREQUENCY;
D O I
10.1007/s40333-017-0075-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Since the early 2000s, many satellite passive microwave brightness temperature (BT) archives, such as the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) BTs, have become the useful resources for assessing the changes in the surface and deep soil moistures over both arid and semi-arid regions. In this study, we used a new soil effective temperature (T-eff ) scheme and the archived AMSR-E BTs to estimate surface soil moisture (SM) over the Nagqu region in the central Tibetan Plateau, China. The surface and deep soil temperatures required for the calculation of regional-scale T-eff were obtained from outputs of the Community Land Model version 4.5 (CLM4.5). In situ SM measurements at the CEOP-CAMP/Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau) experimental sites were used to validate the AMSR-E-based SM estimations at regional and single-site scales. Furthermore, the spatial distribution of monthly mean surface SM over the Nagqu region was obtained from 16 daytime AMSR-E BT observations in July 2004 over the Nagqu region. Results revealed that the AMSR-E-based surface SM estimations agreed well with the in situ-based surface SM measurements, with the root mean square error (RMSE) ranging from 0.042 to 0.066 m(3)/m(3) and the coefficient of determination (R-2) ranging from 0.71 to 0.92 during the nighttime and daytime. The regional surface soil water state map showed a clear spatial pattern related to the terrain. It indicated that the lower surface SM values occurred in the mountainous areas of the northern, mid-western and southeastern parts of Nagqu region, while the higher surface SM values appeared in the low elevation areas such as the Tongtian River Basin, Namco Lake and bog meadows in the central part of Nagqu region. Our analysis also showed that the new T-eff scheme does not require special fitting parameters or additional assumptions, which simplifies the data requirements for regional-scale applications. This scheme combined with the archived satellite passive microwave BT observations can be used to estimate the historical surface SM for hydrological process studies over the Tibetan Plateau regions.
引用
收藏
页码:84 / 100
页数:17
相关论文
共 50 条
[1]   Infiltration into soils: Conceptual approaches and solutions [J].
Assouline, Shmuel .
WATER RESOURCES RESEARCH, 2013, 49 (04) :1755-1772
[2]   Which type of soil-vegetation-atmosphere transfer scheme is needed for general circulation models: a proposal for a higher-order scheme [J].
Avissar, R .
JOURNAL OF HYDROLOGY, 1998, 212 (1-4) :136-154
[3]   Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe [J].
Brocca, L. ;
Hasenauer, S. ;
Lacava, T. ;
Melone, F. ;
Moramarco, T. ;
Wagner, W. ;
Dorigo, W. ;
Matgen, P. ;
Martinez-Fernandez, J. ;
Llorens, P. ;
Latron, J. ;
Martin, C. ;
Bittelli, M. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) :3390-3408
[4]   On the characteristics of water vapor transport from atmosphere boundary layer to stratosphere over Tibetan Plateau regions in summer [J].
Chen Bin ;
Xu Xiang-De ;
Yang Shuai ;
Bian Jian-Chun .
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2012, 55 (02) :406-414
[5]   A PARAMETERIZATION OF EFFECTIVE SOIL-TEMPERATURE FOR MICROWAVE EMISSION [J].
CHOUDHURY, BJ ;
SCHMUGGE, TJ ;
MO, T .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1982, 87 (NC2) :1301-1304
[6]   Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers [J].
de Jeu, R. A. M. ;
Wagner, W. ;
Holmes, T. R. H. ;
Dolman, A. J. ;
van de Giesen, N. C. ;
Friesen, J. .
SURVEYS IN GEOPHYSICS, 2008, 29 (4-5) :399-420
[7]  
de Jeu R.A.M., 2003, THESIS
[8]   MICROWAVE DIELECTRIC BEHAVIOR OF WET SOIL .2. DIELECTRIC MIXING MODELS [J].
DOBSON, MC ;
ULABY, FT ;
HALLIKAINEN, MT ;
ELRAYES, MA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1985, 23 (01) :35-46
[9]  
Drusch M, 2001, J HYDROMETEOROL, V2, P181, DOI 10.1175/1525-7541(2001)002<0181:VAACFT>2.0.CO
[10]  
2