Arithmetic and ergodic properties of 'flipped' continued fraction algorithms

被引:14
作者
Dajani, K. [1 ]
Hensley, D. [2 ]
Kraaikamp, C. [3 ]
Masarotto, V. [3 ,4 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Delft Univ Technol, EWI DIAM, NL-2628 CD Delft, Netherlands
[4] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
continued fractions; ergodicity; sigma-finite infinite invariant measures; ENTROPY; MAPS;
D O I
10.4064/aa153-1-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:51 / 79
页数:29
相关论文
共 35 条
  • [1] Adler R., 1984, Ergod. Theory Dyn. Syst., V4, P487
  • [2] [Anonymous], 2008, LANG ENV STAT COMP
  • [3] METRICAL THEORY FOR OPTIMAL CONTINUED FRACTIONS
    BOSMA, W
    KRAAIKAMP, C
    [J]. JOURNAL OF NUMBER THEORY, 1990, 34 (03) : 251 - 270
  • [4] BOSMA W, 1987, P K NED AKAD A MATH, V90, P353
  • [5] Briggs K., 2003, PRECISE COMPUTATION
  • [6] Choe G. H., 2005, ALGORITHMS COMPUT MA, V13
  • [7] Generalized continued fractions
    Choe, GH
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 109 (2-3) : 287 - 299
  • [8] Dajani K., 2002, CARUS MATH MONOGRAPH, V29
  • [9] Dajani K., 2000, C MATH, V84/85, P1
  • [10] Dajani K., 2000, Colloq. Math, V84/85, P109, DOI [10.4064/cm-84/85-1-109-123, DOI 10.4064/CM-84/85-1-109-123]