Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk

被引:300
作者
Cai, Junmeng [1 ]
Xu, Di [1 ]
Dong, Zhujun [1 ]
Yu, Xi [2 ]
Yang, Yang [2 ]
Banks, Scott W. [2 ]
Bridgwater, Anthony V. [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Agr & Biol, Minist Agr, Key Lab Urban Agr South,Biomass Energy Engn Res C, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Aston Univ, EBRI, Bioenergy Res Grp, Birmingham B4 7ET, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Thermogravimetric analysis (TGA); Kinetic analysis; Biomass pyrolysis; Isoconversional kinetic method; Effective activation energy; ACTIVATION-ENERGY MODEL; THERMAL-DECOMPOSITION; SUGARCANE STRAW; BIO-OIL; CONVERSION; COMBUSTION; COMPUTATIONS; SIMULATION; PARAMETERS; FRIEDMAN;
D O I
10.1016/j.rser.2017.09.113
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Modeling of lignocellulosic biomass pyrolysis processes can be used to determine their key operating and design parameters. This requires significant amount of information about pyrolysis kinetic parameters, in particular the activation energy. Thermogravimetric analysis (TGA) is the most commonly used tool to obtain experimental kinetic data, and isoconversional kinetic analysis is the most effective way for processing TGA data to calculate effective activation energies for lignocellulosic biomass pyrolysis. This paper reviews the overall procedure of processing TGA data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis by using the Friedman isoconversional method. This includes the removal of "error" data points and dehydration stage from original TGA data, transformation of TGA data to conversion data, differentiation of conversion data and smoothing of derivative conversion data, interpolation of conversion and derivative conversion data, isoconversional calculations, and reconstruction of kinetic process. The detailed isoconversional kinetic analysis of TGA data obtained from the pyrolysis of corn stalk at five heating rates were presented. The results have shown that the effective activation energies of corn stalk pyrolysis vary from 148 to 473 kJ mol(-1) when the conversion ranges from 0.05 to 0.85.
引用
收藏
页码:2705 / 2715
页数:11
相关论文
共 102 条
[51]   Processing of TGA data: Analysis of isoconversional and model fitting methods [J].
Jain, Ankit A. ;
Mehra, Anurag ;
Ranade, Vivek V. .
FUEL, 2016, 165 :490-498
[52]   A kinetic study of the thermal decomposition process of potassium metabisulfite: Estimation of distributed reactivity model [J].
Jankovic, B. ;
Mentus, S. ;
Jankovic, M. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2008, 69 (08) :1923-1933
[53]  
Jankovic BZ, 2013, CELL CHEM TECHNOL, V47, P681
[54]   Influence of mass transfer on thermogravimetric analysis of combustion and gasification reactivity of coke [J].
Jess, Andreas ;
Andresen, Ann-Kathrin .
FUEL, 2010, 89 (07) :1541-1548
[55]   Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters [J].
Kan, Tao ;
Strezov, Vladimir ;
Evans, Tim J. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 57 :1126-1140
[56]   VARIATION OF PEAK TEMPERATURE WITH HEATING RATE IN DIFFERENTIAL THERMAL ANALYSIS [J].
KISSINGER, HE .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1956, 57 (04) :217-221
[57]   Biomass Pyrolysis: Comments on Some Sources of Confusions in the Definitions of Temperatures and Heating Rates [J].
Lede, Jacques .
ENERGIES, 2010, 3 (04) :886-898
[58]   Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis [J].
Li, Zhihe ;
Li, Ning ;
Yi, Weiming ;
Fu, Peng ;
Li, Yongjun ;
Bai, Xueyuan .
FUEL PROCESSING TECHNOLOGY, 2017, 161 :182-192
[59]  
Malik G, 2003, CALCULUS FINITE DIFF
[60]   Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy [J].
Mehmood, Muhammad Aamer ;
Ye, Guangbin ;
Luo, Huibo ;
Liu, Chenguang ;
Malik, Sana ;
Afzal, Ifrah ;
Xu, Jianren ;
Ahmad, Muhammad Sajjad .
BIORESOURCE TECHNOLOGY, 2017, 228 :18-24