Stability index jump for constant mean curvature hypersurfaces of spheres

被引:4
作者
Perdomo, Oscar [1 ]
Brasil, Aldir, Jr. [2 ]
机构
[1] Cent Connecticut State Univ, Dept Math, New Britain, CT 06050 USA
[2] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
关键词
Constant mean curvature; Stability index; Spheres; RIEMANNIAN-MANIFOLDS;
D O I
10.1007/s00013-012-0437-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the totally umbilical hypersurfaces in the (n + 1)-dimensional spheres are characterized as the only hypersurfaces with weak stability index 0. That is, a compact hypersurface with constant mean curvature, cmc, in S (n+1), different from an Euclidean sphere, must have stability index greater than or equal to 1. In this paper we prove that the weak stability index of any non-totally umbilical compact hypersurface with cmc cannot take the values 1, 2, 3 . . . , n.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 17 条
[1]  
ALIAS L., ARXIV09052128V2
[2]  
ALIAS L., 2006, MANUSCRIPTA MATH, V121, P329
[3]  
ALIAS L., 2007, P AM MATH SOC, V135, P3685
[4]   A characterization of quadric constant mean curvature hypersurfaces of spheres [J].
Alias, Luis J. ;
Brasil, Aldir, Jr. ;
Perdomo, Oscar .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (03) :687-703
[5]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[6]   STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JL ;
DOCARMO, M .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) :339-353
[7]  
Barros A., 2009, KODAI MATH J, V32, P442
[8]  
BRASIL A, 1999, REND CIRC MAT PALERM, V48, P537
[9]  
COLBERG E., ARXIV09014398
[10]   Stable constant mean curvature hypersurfaces in some Riemannian manifolds [J].
Montiel, S .
COMMENTARII MATHEMATICI HELVETICI, 1998, 73 (04) :584-602