Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

被引:12
作者
Zhu, Chunrong [1 ]
Qu, Changzheng [2 ]
机构
[1] Anhui Normal Univ, Coll Math & Comp Sci, Wuhu 241000, Anhui, Peoples R China
[2] Ningbo Univ, Ctr Nonlinear Studies, Ningbo 315211, Zhejiang, Peoples R China
来源
SYMMETRY-BASEL | 2016年 / 8卷 / 11期
基金
中国国家自然科学基金;
关键词
symmetry group; invariant subspace; conditional Lie-Backlund symmetry; finite-dimensional dynamical system; nonlinear differential operator; LIE-BACKLUND SYMMETRIES; DIFFUSION-EQUATIONS; EULER EQUATIONS; DIFFERENTIAL-OPERATORS; EXPLICIT SOLUTIONS; MAXIMAL DIMENSION; BLOWUP SOLUTIONS; FLOW MODEL; REDUCTION; ANSATZE;
D O I
10.3390/sym8110128
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie-Backlund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie-Backlund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
引用
收藏
页数:23
相关论文
共 49 条