Smooth Rational Curves on Singular Rational Surfaces

被引:0
作者
Zhuang, Ziquan [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
RANK ONE;
D O I
10.1307/mmj/1508810820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify all complex surfaces with quotient singularities that do not contain any smooth rational curves under the assumption that the canonical divisor of the surface is not pseudo-effective. As a corollary, we show that if X is a log del Pezzo surface such that, for every closed point p is an element of X, there is a smooth curve (locally analytically) passing through p, then X contains at least one smooth rational curve.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 14 条
  • [1] [Anonymous], 1996, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, DOI DOI 10.1007/978-3-662-03276-3
  • [2] [Anonymous], 2013, Cambridge Tracts in Mathematics
  • [3] ON ISOLATED RATIONAL SINGULARITIES OF SURFACES
    ARTIN, M
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) : 129 - &
  • [4] Brieskorn E., 1967, Inventiones Mathematicae, V4, P336, DOI 10.1007/BF01425318
  • [5] Durfee Alan H., 1979, Enseign. Math. (2), V25, P131
  • [6] GONZALEZSPRINBERG G, 1994, CR ACAD SCI I-MATH, V318, P653
  • [7] Hartshorne R., 2013, CAMBRIDGE TRACTS MAT, V200
  • [8] Hartshorne R., 1977, ALGEBRAIC GEOM, V52
  • [9] Keel S., 1999, MEM AM MATH SOC, V140, DOI [10.1090/memo/0669, DOI 10.1090/MEMO/0669]
  • [10] Notes on minimal compactifications of the affine plane
    Kojima, Hideo
    Takahashi, Takeshi
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (01) : 153 - 169