A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection

被引:118
作者
Li, Xiao [1 ]
Zhao, Chen [1 ]
Liu, Xinyu [1 ]
机构
[1] McGill Univ, Dept Mech Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
electrochemical detection; enzymatic biosensor; glucose detection; paper-based microfluidics; zinc oxide nanowire; HIGH-PERFORMANCE; ZNO NANORODS; IMMOBILIZATION; SEPARATION; SENSORS; GROWTH;
D O I
10.1038/micronano.2015.14
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper reports an electrochemical microfluidic paper-based analytical device (E mu PAD) for glucose detection, featuring a highly sensitive working electrode (WE) decorated with zinc oxide nanowires (ZnO NWs). In addition to the common features of mu PADs, such as their low costs, high portability/disposability, and ease of operation, the reported E mu PAD has three further advantages. (i) It provides higher sensitivity and a lower limit of detection (LOD) than previously reported mu PADs because of the high surface-to-volume ratio and high enzyme-capturing efficiency of the ZnO NWs. (ii) It does not need any light-sensitive electron mediator (as is usually required in enzymatic glucose sensing), which leads to enhanced biosensing stability. (iii) The ZnO NWs are directly synthesized on the paper substrate via low-temperature hydrothermal growth, representing a simple, low-cost, consistent, and mass-producible process. To achieve superior analytical performance, the on-chip stored enzyme (glucose oxidase) dose and the assay incubation time are tuned. More importantly, the critical design parameters of the E mu PAD, including the WE area and the ZnO-NW growth level, are adjusted to yield tunable ranges for the assay sensitivity and LOD. The highest sensitivity that we have achieved is 8.24 mu A center dot mM(-1)center dot cm(-2), with a corresponding LOD of 59.5 mu M. By choosing the right combination of design parameters, we constructed E mu PADs that cover the range of clinically relevant glucose concentrations (0-15 mM) and fully calibrated these devices using spiked phosphate-buffered saline and human serum. We believe that the reported approach for integrating ZnO NWs on E mu PADs could be well utilized in many other designs of E mu PADs and provides a facile and inexpensive paradigm for further enhancing the device performance.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection [J].
Abbas, Abdennour ;
Brimer, Andrew ;
Slocik, Joseph M. ;
Tian, Limei ;
Naik, Rajesh R. ;
Singamaneni, Srikanth .
ANALYTICAL CHEMISTRY, 2013, 85 (08) :3977-3983
[2]   Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics [J].
Carrilho, Emanuel ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :7091-7095
[3]   Electrochemical Detection for Paper-Based Microfluidics [J].
Dungchai, Wijitar ;
Chailapakul, Orawon ;
Henry, Charles S. .
ANALYTICAL CHEMISTRY, 2009, 81 (14) :5821-5826
[4]   Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J].
Feng, XJ ;
Feng, L ;
Jin, MH ;
Zhai, J ;
Jiang, L ;
Zhu, DB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :62-63
[5]   Tyrosinase Immobilization on ZnO Nanorods for Phenol Detection [J].
Gu, B. X. ;
Xu, C. X. ;
Zhu, G. P. ;
Liu, S. Q. ;
Chen, L. Y. ;
Li, X. S. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (01) :377-381
[6]   Digital Selective Growth of ZnO Nanowire Arrays from Inkjet-Printed Nanoparticle Seeds on a Flexible Substrate [J].
Ko, Seung Hwan ;
Lee, Daeho ;
Hotz, Nico ;
Yeo, Junyeob ;
Hong, Sukjoon ;
Nam, Koo Hyun ;
Grigoropouloss, Costas P. .
LANGMUIR, 2012, 28 (10) :4787-4792
[7]   Nanowire dye-sensitized solar cells [J].
Law, M ;
Greene, LE ;
Johnson, JC ;
Saykally, R ;
Yang, PD .
NATURE MATERIALS, 2005, 4 (06) :455-459
[8]   Paper-Based Piezoelectric Touch Pads with Hydrothermally Grown Zinc Oxide Nanowires [J].
Li, Xiao ;
Wang, Yu-Hsuan ;
Zhao, Chen ;
Liu, Xinyu .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22004-22012
[9]   Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper [J].
Li, Xiao ;
Liu, Xinyu .
MICROFLUIDICS AND NANOFLUIDICS, 2014, 16 (05) :819-827
[10]   Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices [J].
Martinez, Andres W. ;
Phillips, Scott T. ;
Whitesides, George M. ;
Carrilho, Emanuel .
ANALYTICAL CHEMISTRY, 2010, 82 (01) :3-10