Fault-tolerant quantum computation with nondeterministic entangling gates

被引:30
作者
Auger, James M. [1 ]
Anwar, Hussain [1 ,2 ]
Gimeno-Segovia, Mercedes [2 ,3 ,4 ,5 ]
Stace, Thomas M. [6 ]
Browne, Dan E. [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[3] Univ Bristol, Quantum Engn Technol Labs, HH Wills Phys Lab, Bristol BS8 1FD, Avon, England
[4] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1FD, Avon, England
[5] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[6] Univ Queensland, ARC Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
Qubits - Quantum entanglement;
D O I
10.1103/PhysRevA.97.030301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Performing entangling gates between physical qubits is necessary for building a large-scale universal quantum computer, but in some physical implementations-for example, those that are based on linear optics or networks of ion traps-entangling gates can only be implemented probabilistically. In this work, we study the fault-tolerant performance of a topological cluster state scheme with local nondeterministic entanglement generation, where failed entangling gates (which correspond to bonds on the lattice representation of the cluster state) lead to a defective three-dimensional lattice with missing bonds. We present two approaches for dealing with missing bonds; the first is a nonadaptive scheme that requires no additional quantum processing, and the second is an adaptive scheme in which qubits can be measured in an alternative basis to effectively remove them from the lattice, hence eliminating their damaging effect and leading to better threshold performance. We find that a fault-tolerance threshold can still be observed with a bond-loss rate of 6.5% for the nonadaptive scheme, and a bond-loss rate as high as 14.5% for the adaptive scheme.
引用
收藏
页数:5
相关论文
共 19 条
[1]   Fast simulation of stabilizer circuits using a graph-state representation [J].
Anders, S ;
Briegel, HJ .
PHYSICAL REVIEW A, 2006, 73 (02)
[2]   Fault-tolerance thresholds for the surface code with fabrication errors [J].
Auger, James M. ;
Anwar, Hussain ;
Gimeno-Segovia, Mercedes ;
Stace, Thomas M. ;
Browne, Dan E. .
PHYSICAL REVIEW A, 2017, 96 (04)
[3]   Fault Tolerant Quantum Computation with Very High Threshold for Loss Errors [J].
Barrett, Sean D. ;
Stace, Thomas M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (20)
[4]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[5]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[6]   Surface Code Quantum Communication [J].
Fowler, Austin G. ;
Wang, David S. ;
Hill, Charles D. ;
Ladd, Thaddeus D. ;
Van Meter, Rodney ;
Hollenberg, Lloyd C. L. .
PHYSICAL REVIEW LETTERS, 2010, 104 (18)
[7]   From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation [J].
Gimeno-Segovia, Mercedes ;
Shadbolt, Pete ;
Browne, Dan E. ;
Rudolph, Terry .
PHYSICAL REVIEW LETTERS, 2015, 115 (02)
[8]   Quantum computing with trapped ions [J].
Haffner, H. ;
Roos, C. F. ;
Blatt, R. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (04) :155-203
[9]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[10]   Blossom V: a new implementation of a minimum cost perfect matching algorithm [J].
Kolmogorov, Vladimir .
MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (01) :43-67