Threshold phenomena for symmetric decreasing solutions of reaction-diffusion equations

被引:18
作者
Muratov, C. B. [1 ]
Zhong, X. [1 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2013年 / 20卷 / 04期
基金
美国国家科学基金会;
关键词
Sharp transition; traveling waves; gradient flow; LONG-TIME BEHAVIOR; NON-LINEAR DIFFUSION; R-N; PARABOLIC PROBLEMS; TRAVELING-WAVES; PROPAGATION; CONVERGENCE; CYLINDERS; EXISTENCE;
D O I
10.1007/s00030-013-0220-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long time behavior of solutions of the Cauchy problem for nonlinear reaction-diffusion equations in one space dimension with the nonlinearity of bistable, ignition or monostable type. We prove a one-to-one relation between the long time behavior of the solution and the limit value of its energy for symmetric decreasing initial data in L (2) under minimal assumptions on the nonlinearities. The obtained relation allows to establish sharp threshold results between propagation and extinction for monotone families of initial data in the considered general setting.
引用
收藏
页码:1519 / 1552
页数:34
相关论文
共 32 条
[1]  
[Anonymous], 2013, Mathematical Biology
[2]  
[Anonymous], 1994, Autosolitons
[3]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[4]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]  
Buckmaster J.D., 1983, LECT MATH COMBUSTION
[7]   Convergence to equilibrium for semilinear parabolic problems in RN [J].
Busca, J ;
Jendoubi, MA ;
Palácik, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) :1793-1814
[8]   The problem of uniqueness of the limit in a semilinear heat equation [J].
Cortázar, C ;
de Pino, M ;
Elgueta, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (11-12) :2147-2172
[9]   Convergence and sharp thresholds for propagation in nonlinear diffusion problems [J].
Du, Yihong ;
Matano, Hiroshi .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (02) :279-312
[10]  
Evans LC, 2010, Partial Differential Equations