On eigenvalue problems of real symmetric tensors

被引:147
作者
Chang, K. C. [1 ]
Pearson, Kelly [2 ]
Zhang, Tan [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Murray State Univ, Dept Math & Stat, Murray, KY 42071 USA
关键词
Numerical multilinear algebra; Higher order tensor;
D O I
10.1016/j.jmaa.2008.09.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use variational methods to give a positive answer to a conjecture posed by Liqun Qi [L Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302-1324] regarding the real eigenvalues of certain higher order tensors. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:416 / 422
页数:7
相关论文
共 8 条
[1]  
[Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
[2]  
Chang K., 2005, Methods in Nonlinear Analysis
[3]   On the best rank-1 approximation of higher-order supersymmetric tensors [J].
Kofidis, E ;
Regalia, PA .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (03) :863-884
[4]  
Lim LH, 2005, IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, P129
[5]  
Qi L., 2007, Front. Math. China, V2, P501, DOI [DOI 10.1007/s11464-007-0031-4, 10.1007/s11464-007-0031-4, DOI 10.1007/S11464-007-0031-4]
[6]   D-eigenvalues of diffusion kurtosis tensors [J].
Qi, Liqun ;
Wang, Yiju ;
Wu, Ed X. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) :150-157
[7]   Eigenvalues of a real supersymmetric tensor [J].
Qi, LQ .
JOURNAL OF SYMBOLIC COMPUTATION, 2005, 40 (06) :1302-1324
[8]  
Rabinowitz P., 1974, Eigenvalues of Nonlinear Problems, P141