Ultrathin interfacial modification of Li-rich layered oxide electrode/sulfide solid electrolyte via atomic layer deposition for high electrochemical performance batteries

被引:17
作者
Zeng, Zhisen [1 ]
Gao, Dan [1 ]
Yang, Guoyong [1 ]
Wu, Qixing [1 ]
Ren, Xiangzhong [1 ]
Zhang, Peixin [1 ,2 ]
Li, Yongliang [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Guangdong, Peoples R China
[2] Shenzhen Univ, Guangdong Flexible Wearable Energy & Tools Engn T, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-rich layered oxides; dual coating; sulfide solid electrolyte; space-charge layer; ALD; CATHODE MATERIAL; SURFACE MODIFICATION; LITHIUM BATTERIES; OXYGEN LOSS; CONDUCTIVITY; STABILITY; LICOO2; GITT; MN; CO;
D O I
10.1088/1361-6528/abaa12
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, Li-rich layered oxides (LLOs) are modified by sulfide solid electrolyte Li10GeP2S12(LGPS) with high ionic conductivity to enhance the diffusion of Li(+)and an ultrathin Al(2)O(3)layer is interposed between LLOs and LGPS through the atomic layer deposition (ALD) technique to inhibit the development of the highly resistive space-charge layer, the side reactions and structure transition of the composites, thus excellently promoting the electrochemical properties of the composites in liquid electrolyte. Among the different ALD cycles of Al2O3, 10 cycles of ultrathin Al(2)O(3)layer achieves the greatest electrochemical performance. The beginning discharge capacity of LLOs@Al2O3/LGPS composites comes up to 233.4 mA h g(-1)with a capacity retention of 90.6% and a voltage retention of 97.3% after 100 cycles at 0.2 C. The composites also exhibit the optimal rate capability and a high energy density of 581 Wh kg(-1)at 1 C. The galvanostatic intermittent titration technique test indicates that the composites (LLOs@Al2O3/LGPS) possess the greatest Li(+)diffusion coefficient (1.58 x 10(-10)cm(2)s(-1)) compared to LLOs (0.85 x 10(-10)cm(2)s(-1)) and LLOs/LGPS (1.10 x 10(-10)cm(2)s(-1)). More importantly, charge curves at the beginning of the initial charge and electrochemical impedance spectroscopy curves clearly reveal the inhibition of the development of the highly resistive space-charge layer.
引用
收藏
页数:8
相关论文
共 45 条
  • [41] High-Energy and Long-Cycling All-Solid-State Lithium-Ion Batteries with Li- and Mn-Rich Layered Oxide Cathodes and Sulfide Electrolytes
    Du, Wubin
    Shao, Qinong
    Wei, Yiqi
    Yan, Chenhui
    Gao, Panyu
    Lin, Yue
    Jiang, Yinzhu
    Liu, Yongfeng
    Yu, Xuebin
    Gao, Mingxia
    Sun, Wenping
    Pan, Hongge
    ACS ENERGY LETTERS, 2022, 7 (09) : 3006 - 3014
  • [42] Minimizing ion/electron pathways through ultrathin conformal holey graphene encapsulation in Li- and Mn-rich layered oxide cathodes for high-performance lithium-ion batteries
    Kim, Sungwook
    Hwang, Jeonguk
    Jo, Youngseok
    Park, Changyong
    Bansal, Neetu
    Salunkhe, Rahul R.
    Ahn, Heejoon
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (26) : 16143 - 16159
  • [43] Structural stability and enhanced electrochemical performance of Co-free Li-rich layered Mn-based Li 1.2 Mn 0.6 Ni 0.2 O 2 cathodes via F doping at the O site of lithium-ion batteries
    Yan, Xin
    Luo, Shao-hua
    Li, Pengyu
    Tian, Xinru
    Li, Sinan
    MATERIALS TODAY CHEMISTRY, 2024, 42
  • [44] Ultrathin ZrO2 on LiNi0.5Mn0.3Co0.2O2 electrode surface via atomic layer deposition for high-voltage operation in lithium-ion batteries
    Ahn, Jinhyeok
    Jan, Eun Kwang
    Yoon, Sukeun
    Lee, Sang-Ju
    Sun, Shi-Joon
    Kim, Dae-Hwan
    Cho, Kuk Young
    APPLIED SURFACE SCIENCE, 2019, 484 : 701 - 709
  • [45] High-performance symmetric lithium-ion batteries constructed with a new bi-functional electrode Li- and Mn-rich layered oxide 0.3Li2MnO3•0.7LiNi1/3Co1/3Mn1/3O2
    Jin, Yanling
    He, Wenwei
    Ren, Fang
    Ren, Penggang
    Xu, Youlong
    ELECTROCHIMICA ACTA, 2019, 325