Ultrathin interfacial modification of Li-rich layered oxide electrode/sulfide solid electrolyte via atomic layer deposition for high electrochemical performance batteries

被引:17
作者
Zeng, Zhisen [1 ]
Gao, Dan [1 ]
Yang, Guoyong [1 ]
Wu, Qixing [1 ]
Ren, Xiangzhong [1 ]
Zhang, Peixin [1 ,2 ]
Li, Yongliang [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Guangdong, Peoples R China
[2] Shenzhen Univ, Guangdong Flexible Wearable Energy & Tools Engn T, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-rich layered oxides; dual coating; sulfide solid electrolyte; space-charge layer; ALD; CATHODE MATERIAL; SURFACE MODIFICATION; LITHIUM BATTERIES; OXYGEN LOSS; CONDUCTIVITY; STABILITY; LICOO2; GITT; MN; CO;
D O I
10.1088/1361-6528/abaa12
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, Li-rich layered oxides (LLOs) are modified by sulfide solid electrolyte Li10GeP2S12(LGPS) with high ionic conductivity to enhance the diffusion of Li(+)and an ultrathin Al(2)O(3)layer is interposed between LLOs and LGPS through the atomic layer deposition (ALD) technique to inhibit the development of the highly resistive space-charge layer, the side reactions and structure transition of the composites, thus excellently promoting the electrochemical properties of the composites in liquid electrolyte. Among the different ALD cycles of Al2O3, 10 cycles of ultrathin Al(2)O(3)layer achieves the greatest electrochemical performance. The beginning discharge capacity of LLOs@Al2O3/LGPS composites comes up to 233.4 mA h g(-1)with a capacity retention of 90.6% and a voltage retention of 97.3% after 100 cycles at 0.2 C. The composites also exhibit the optimal rate capability and a high energy density of 581 Wh kg(-1)at 1 C. The galvanostatic intermittent titration technique test indicates that the composites (LLOs@Al2O3/LGPS) possess the greatest Li(+)diffusion coefficient (1.58 x 10(-10)cm(2)s(-1)) compared to LLOs (0.85 x 10(-10)cm(2)s(-1)) and LLOs/LGPS (1.10 x 10(-10)cm(2)s(-1)). More importantly, charge curves at the beginning of the initial charge and electrochemical impedance spectroscopy curves clearly reveal the inhibition of the development of the highly resistive space-charge layer.
引用
收藏
页数:8
相关论文
共 45 条
  • [31] Crucial role of Ni-doping to interfacial Li2MnO3 layer of High-performance Ni-rich layered cathode in Lithium-Ion batteries
    Jeong, Seonghun
    Choi, Kwonyoung
    Ho, Van-Chuong
    Cho, Jiung
    Bae, Jong-Seong
    Nam, Sang Cheol
    Yim, Taeeun
    Mun, Junyoung
    CHEMICAL ENGINEERING JOURNAL, 2022, 434
  • [32] Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation
    Huang, Jiajia
    Liu, Haodong
    Hu, Tao
    Meng, Ying Shirley
    Luo, Jian
    JOURNAL OF POWER SOURCES, 2018, 375 : 21 - 28
  • [33] Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries
    Zhang, S. Z.
    Xia, X. H.
    Xie, D.
    Xu, R. C.
    Xu, Y. J.
    Xia, Y.
    Wu, J. B.
    Yao, Z. J.
    Wang, X. L.
    Tu, J. P.
    JOURNAL OF POWER SOURCES, 2019, 409 : 31 - 37
  • [34] Controllable construction of La2Li0.5Co0.5O4 multifunctional "armor" to stabilize Li-rich layered oxide cathode for high-performance lithium-ion batteries
    Deng, Xiaoyang
    Li, Mi
    Ma, Zizai
    Wang, Xiaoguang
    NANO RESEARCH, 2023, 16 (07) : 10634 - 10643
  • [35] Controllable construction of La2Li0.5Co0.5O4 multifunctional “armor” to stabilize Li-rich layered oxide cathode for high-performance lithium-ion batteries
    Xiaoyang Deng
    Mi Li
    Zizai Ma
    Xiaoguang Wang
    Nano Research, 2023, 16 : 10634 - 10643
  • [36] Improved electrochemical activity of the Li2MnO3-like superstructure in high-nickel Li-rich layered oxide Li1.2Ni0.4Mn0.4O2 and its enhanced performances via tungsten doping
    Guo, Limin
    Tan, Xinghua
    Mao, Dongdong
    Zhao, Tingqiao
    Song, Luting
    Liu, Yanlin
    Kang, Xiaohong
    Wang, Hanfu
    Sun, Lianfeng
    Chu, Weiguo
    ELECTROCHIMICA ACTA, 2021, 370 (370)
  • [37] Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi0.9Mn0.05Co0.05O2 cathode material by ultrathin Li-rich oxide layer for lithium-ion batteries
    Kim, Kyoung-Eun
    Jeong, Jiwon
    Lee, Yongheum
    Lim, Hyojun
    Chung, Kyung Yoon
    Kim, Hansu
    Kim, Sang-Ok
    JOURNAL OF POWER SOURCES, 2024, 601
  • [38] Enhanced electrochemical performance of Li-rich manganese layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with Al2O3-ZrO2 for lithium-ion battery
    Luo, Huan
    Li, Hao
    Yuan, Shengxu
    Li, Jinchao
    Zhang, Yaping
    Duan, Hao
    Li, Jing
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (26) : 20518 - 20531
  • [39] A Plastic-Crystal Electrolyte Layer Promotes Interfacial Stability of Ni-Rich Oxide Cathode in Li6PS5Cl-Based All-Solid-State Rechargeable Li Batteries
    Ma, Ruojian
    Liu, Yaning
    Fang, Ruyi
    Zhang, Jun
    Wang, Ya-Hui
    Huang, Hui
    Gan, Yongping
    He, Xinping
    Xia, Xinhui
    Zhang, Wenkui
    Xia, Yang
    Xin, Sen
    CHEMSUSCHEM, 2024, 17 (24)
  • [40] Retarding the capacity fading and voltage decay of Li-rich Mn-based cathode materials via a compatible layer coating for high-performance lithium-ion batteries
    Liu, Shaofeng
    Yue, Haifeng
    Mo, Yan
    Luo, Liang
    Wu, Xiaozhen
    Yang, Shunyi
    Huang, Youyuan
    Yuan, Guohui
    RSC ADVANCES, 2024, 14 (36) : 26142 - 26151