Chaotic Systems with Absorption

被引:16
作者
Altmann, Eduardo G. [1 ]
Portela, Jefferson S. E. [2 ]
Tel, Tamas [3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Fraunhofer Inst Ind Math ITWM, D-67663 Kaiserslautern, Germany
[3] Eotvos Lorand Univ, Inst Theoret Phys, HAS Res Grp, H-1117 Budapest, Hungary
关键词
DYNAMICS; DECAY; RATES; SETS;
D O I
10.1103/PhysRevLett.111.144101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate kappa in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions D-q obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D-1 in terms of kappa, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.
引用
收藏
页数:5
相关论文
共 25 条
[1]   Leaking chaotic systems [J].
Altmann, Eduardo G. ;
Portela, Jefferson S. E. ;
Tel, Tamas .
REVIEWS OF MODERN PHYSICS, 2013, 85 (02) :869-918
[2]  
[Anonymous], 1993, Chaos in Dynamical Systems
[3]  
Berry M. V., 2010, NEW DIRECTIONS LINEA
[4]   Discrete flow mapping: transport of phase space densities on triangulated surfaces [J].
Chappell, David J. ;
Tanner, Gregor ;
Loechel, Dominik ;
Sondergaard, Niels .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2155)
[5]   Solving the stationary Liouville equation via a boundary element method [J].
Chappell, David J. ;
Tanner, Gregor .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 :487-498
[6]   Follow the fugitive: an application of the method of images to open systems [J].
Cristadoro, G. ;
Knight, G. ;
Degli Esposti, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)
[7]  
Faure F., 2008, OPEN MATH J, V1, P35
[8]   ESCAPE RATES AND PERRON-FROBENIUS OPERATORS: OPEN AND CLOSED DYNAMICAL SYSTEMS [J].
Froyland, Gary ;
Stancevic, Ognjen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (02) :457-472
[9]   Hydrodynamic modes as singular eigenstates of the Liouvillian dynamics: Deterministic diffusion [J].
Gaspard, P .
PHYSICAL REVIEW E, 1996, 53 (05) :4379-4401
[10]  
Gaspard P., 1998, Chaos, Scattering and Statistical Mechanics