Chaotic Systems with Absorption

被引:15
作者
Altmann, Eduardo G. [1 ]
Portela, Jefferson S. E. [2 ]
Tel, Tamas [3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Fraunhofer Inst Ind Math ITWM, D-67663 Kaiserslautern, Germany
[3] Eotvos Lorand Univ, Inst Theoret Phys, HAS Res Grp, H-1117 Budapest, Hungary
关键词
DYNAMICS; DECAY; RATES; SETS;
D O I
10.1103/PhysRevLett.111.144101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate kappa in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions D-q obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D-1 in terms of kappa, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.
引用
收藏
页数:5
相关论文
共 25 条
  • [1] Leaking chaotic systems
    Altmann, Eduardo G.
    Portela, Jefferson S. E.
    Tel, Tamas
    [J]. REVIEWS OF MODERN PHYSICS, 2013, 85 (02) : 869 - 918
  • [2] [Anonymous], 1993, Chaos in Dynamical Systems
  • [3] Berry M. V., 2010, NEW DIRECTIONS LINEA
  • [4] Discrete flow mapping: transport of phase space densities on triangulated surfaces
    Chappell, David J.
    Tanner, Gregor
    Loechel, Dominik
    Sondergaard, Niels
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2155):
  • [5] Solving the stationary Liouville equation via a boundary element method
    Chappell, David J.
    Tanner, Gregor
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 487 - 498
  • [6] Follow the fugitive: an application of the method of images to open systems
    Cristadoro, G.
    Knight, G.
    Degli Esposti, M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)
  • [7] Faure F., 2008, OPEN MATH J, V1, P35
  • [8] ESCAPE RATES AND PERRON-FROBENIUS OPERATORS: OPEN AND CLOSED DYNAMICAL SYSTEMS
    Froyland, Gary
    Stancevic, Ognjen
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (02): : 457 - 472
  • [9] Hydrodynamic modes as singular eigenstates of the Liouvillian dynamics: Deterministic diffusion
    Gaspard, P
    [J]. PHYSICAL REVIEW E, 1996, 53 (05): : 4379 - 4401
  • [10] Gaspard P., 1998, Chaos, Scattering and Statistical Mechanics