Fourth-order perturbative equations in Lagrangian perturbation theory for a cosmological dust fluid

被引:6
作者
Tatekawa, Takayuki [1 ,2 ]
机构
[1] Univ Fukui, Ctr Informat Initiat, Fukui 9108507, Japan
[2] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
关键词
LARGE-SCALE STRUCTURE; FRIEDMAN-LEMAITRE COSMOLOGIES; GRAVITATIONAL-INSTABILITY; NONLINEAR APPROXIMATIONS; INITIAL CONDITIONS; UNIVERSE; TRANSIENTS; ACCURACY; COLLAPSE; MODEL;
D O I
10.1093/ptep/pts053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have derived fourth-order perturbative equations in Lagrangian perturbation theory for a cosmological dust fluid. These equations are derived under the supposition of Newtonian cosmology in the Friedmann-Lemaitre-Robertson-Walker Universe model. Even if we consider the longitudinal mode in the first-order perturbation, the transverse mode appears in the third-order perturbation. Furthermore, in this case, six longitudinal-mode equations and four transverse-mode equations appear in the fourth-order perturbation. The application of the fourth-order perturbation leads to a precise prediction of the large-scale structure.
引用
收藏
页数:20
相关论文
共 53 条
[1]   THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY [J].
Abazajian, Kevork N. ;
Adelman-McCarthy, Jennifer K. ;
Agueros, Marcel A. ;
Allam, Sahar S. ;
Prieto, Carlos Allende ;
An, Deokkeun ;
Anderson, Kurt S. J. ;
Anderson, Scott F. ;
Annis, James ;
Bahcall, Neta A. ;
Bailer-Jones, C. A. L. ;
Barentine, J. C. ;
Bassett, Bruce A. ;
Becker, Andrew C. ;
Beers, Timothy C. ;
Bell, Eric F. ;
Belokurov, Vasily ;
Berlind, Andreas A. ;
Berman, Eileen F. ;
Bernardi, Mariangela ;
Bickerton, Steven J. ;
Bizyaev, Dmitry ;
Blakeslee, John P. ;
Blanton, Michael R. ;
Bochanski, John J. ;
Boroski, William N. ;
Brewington, Howard J. ;
Brinchmann, Jarle ;
Brinkmann, J. ;
Brunner, Robert J. ;
Budavari, Tamas ;
Carey, Larry N. ;
Carliles, Samuel ;
Carr, Michael A. ;
Castander, Francisco J. ;
Cinabro, David ;
Connolly, A. J. ;
Csabai, Istvan ;
Cunha, Carlos E. ;
Czarapata, Paul C. ;
Davenport, James R. A. ;
de Haas, Ernst ;
Dilday, Ben ;
Doi, Mamoru ;
Eisenstein, Daniel J. ;
Evans, Michael L. ;
Evans, N. W. ;
Fan, Xiaohui ;
Friedman, Scott D. ;
Frieman, Joshua A. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 182 (02) :543-558
[2]  
[Anonymous], 1980, The large-scale structure of the universe, DOI DOI 10.23943/PRINCETON/9780691209838.001.0001
[3]  
[Anonymous], J COSMOL ASTROPART P
[4]   THE LARGE-SCALE STRUCTURE OF THE UNIVERSE .1. GENERAL-PROPERTIES - ONE-DIMENSIONAL AND TWO-DIMENSIONAL MODELS [J].
ARNOLD, VI ;
SHANDARIN, SF ;
ZELDOVICH, YB .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1982, 20 (1-2) :111-130
[5]   GRAVITATIONAL COLLAPSE OF ROTATING PANCAKES [J].
BARROW, JD ;
SAICH, P .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (01) :79-91
[6]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248
[7]   Multipoint propagators in cosmological gravitational instability [J].
Bernardeau, Francis ;
Crocce, Martin ;
Scoccimarro, Roman .
PHYSICAL REVIEW D, 2008, 78 (10)
[8]   Propagators in Lagrangian space [J].
Bernardeau, Francis ;
Valageas, Patrick .
PHYSICAL REVIEW D, 2008, 78 (08)
[9]  
Bertschinger E., 1991, Computers in Physics, V5, P164
[10]  
BOUCHET FR, 1995, ASTRON ASTROPHYS, V296, P575