Synthesis of porous NiO materials with preferentially oriented crystalline structures with enhanced stability as lithium ion battery anodes

被引:45
作者
Kim, Gil-Pyo [1 ]
Park, Soomin [1 ]
Nam, Inho [1 ]
Park, Junsu [1 ]
Yi, Jongheop [1 ]
机构
[1] Seoul Natl Univ, World Class Univ, Program Chem Convergence Energy & Environm, Inst Chem Proc,Sch Chem & Biol Engn,Coll Engn, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
Agarose gel; Nickel oxide; Electrodeposition; Preferential growth; Lithium-ion battery; HYDROTHERMAL CARBONIZATION; ELECTRODES; FABRICATION; TEMPLATE; CAPACITY; SILICA;
D O I
10.1016/j.jpowsour.2013.03.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple strategy is described for the synthesis of nickel oxide embedded in a carbonaceous matrix (NiO/C) using a templated agarose gel thin film, in an attempt to produce an electrode with a large reversible capacity and long cycle stability. The as-prepared films are directly deposited onto stainless steel substrates from a solution of the Ni2+ precursors. Scanning electron microscopy images indicate that the as-synthesized NiO/C has a porous and interconnected structure. The results of X-ray diffraction and Fourier transform-infrared spectroscopy analyses confirm the preferential (111) growth of NiO and the presence of carbonaceous materials. As an anode material for lithium ion batteries, this novel structure plays a positive role in producing a material with a large reversible capacity, high conductivity, and long cyclic stability. The high reversible capacity is maintained at an elevated current density. Even after 100 cycles, the NiO/C anodes deliver more than 600 mAh g(-1) at a current density of 718 mA g(-1), which is significantly higher than the capacity of commercial graphite anodes. The results indicate the existence of a synergetic effect between the porous NiO layers and the conductive matrix in the composite. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 177
页数:6
相关论文
共 38 条
[1]   Low-internal-stress nickel multiwalled carbon nanotube composite electrodeposited from a sulfamate bath [J].
Arai, Susumu ;
Saito, Takashi ;
Endo, Morinobu .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :D530-D533
[2]   Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites [J].
Datta, K. K. R. ;
Srinivasan, B. ;
Balaram, H. ;
Eswaramoorthy, M. .
JOURNAL OF CHEMICAL SCIENCES, 2008, 120 (06) :579-586
[3]   Template-directed assembly using nanoparticle building blocks: A nanotectonic approach to organized materials [J].
Davis, SA ;
Breulmann, M ;
Rhodes, KH ;
Zhang, B ;
Mann, S .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3218-3226
[4]   Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:: A highly efficient material for Li-battery applications [J].
Du, Ning ;
Zhang, Hui ;
Chen, Bindi ;
Wu, Jianbo ;
Ma, Xiangyang ;
Liu, Zhihong ;
Zhang, Yiqiang ;
Yang, Deren ;
Huang, Xiaohua ;
Tu, Jiangping .
ADVANCED MATERIALS, 2007, 19 (24) :4505-+
[5]   Synthesis of mesoporous silica by sol-gel mineralisation of cellulose nanorod nematic suspensions [J].
Dujardin, E ;
Blaseby, M ;
Mann, S .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (04) :696-699
[6]   Ultrafine SnO2 dispersed carbon matrix composites derived by a sol-gel method as anode materials for lithium ion batteries [J].
Gao, Mingxia ;
Chen, Xuan ;
Pan, Hongge ;
Xiang, Liangshun ;
Wu, Fan ;
Liu, Yongfeng .
ELECTROCHIMICA ACTA, 2010, 55 (28) :9067-9074
[7]   Net-structured NiO-C nanocomposite as Li-intercalation electrode material [J].
Huang, X. H. ;
Tu, J. P. ;
Zhang, C. Q. ;
Xiang, J. Y. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :1180-1184
[8]   Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries [J].
Huang, X. H. ;
Tu, J. P. ;
Xia, X. H. ;
Wang, X. L. ;
Xiang, J. Y. ;
Zhang, L. ;
Zhou, Y. .
JOURNAL OF POWER SOURCES, 2009, 188 (02) :588-591
[9]   Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage [J].
Huang, Yun ;
Huang, Xiao-lei ;
Lian, Jian-she ;
Xu, Dan ;
Wang, Li-min ;
Zhang, Xin-bo .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (07) :2844-2847
[10]   Composite lithium battery anodes based on carbon@Co3O4 nanostructures: Synthesis and characterization [J].
Jayaprakash, Navaneedhakrishnan ;
Jones, Wanda D. ;
Moganty, Surya S. ;
Archer, Lynden A. .
JOURNAL OF POWER SOURCES, 2012, 200 :53-58