Visually Evoked Potential for EEG Biometrics using Convolutional Neural Network

被引:0
|
作者
Das, Rig [1 ]
Maiorana, Emanuele [1 ]
Campisi, Patrizio [1 ]
机构
[1] Roma Tre Univ, Dept Engn, Sect Appl Elect, Via Vito Volterra 62, I-00146 Rome, Italy
来源
2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2017年
关键词
Electroencephalography; Visually evoked potential; Convolutional neural network; CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we investigate the performance of electroencephalographic (EEG) signals, elicited by means of visual stimuli, for biometric identification. A deep learning method such as convolutional neural network (CNN), is used for automatic discriminative feature extraction and individual identification. Experiments are performed on a longitudinal database comprising of EEG data acquired from 40 subjects over two distinct sessions separated by a week time. The experimental results testify the existence of repeatable discriminative characteristics in individuals' EEG signals.
引用
收藏
页码:951 / 955
页数:5
相关论文
共 50 条
  • [41] Subject-Independent Emotion Recognition of EEG Signals Based on Dynamic Empirical Convolutional Neural Network
    Liu, Shuaiqi
    Wang, Xu
    Zhao, Ling
    Zhao, Jie
    Xin, Qi
    Wang, Shui-Hua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (05) : 1710 - 1721
  • [42] A NOVEL CONVOLUTIONAL NEURAL NETWORK MODEL TO REMOVE MUSCLE ARTIFACTS FROM EEG
    Zhang, Haoming
    Wei, Chen
    Zhao, Mingqi
    Liu, Quanying
    Wu, Haiyan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1265 - 1269
  • [43] Detection of Plastics Using Convolutional Neural Network
    Latha, R. S.
    Sreekanth, G. R.
    Amarnath, A. C.
    Abishek, K. K.
    Deepakraj, K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (04): : 224 - 227
  • [44] Automated EEG-based screening of depression using deep convolutional neural network
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    Subha, D. P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 : 103 - 113
  • [45] A deep convolutional neural network model for automated identification of abnormal EEG signals
    Yildirim, Ozal
    Baloglu, Ulas Baran
    Acharya, U. Rajendra
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (20) : 15857 - 15868
  • [46] The unilateral upper limb classification from fMRI-weighted EEG signals using convolutional neural network
    Yang, Banghua
    Ma, Jun
    Qiu, Wenzheng
    Zhang, Jian
    Wang, Xiaofan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [47] Emotion Recognition Using Three-Dimensional Feature and Convolutional Neural Network from Multichannel EEG Signals
    Chao, Hao
    Dong, Liang
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 2024 - 2034
  • [48] Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
    Madanu, Ravichandra
    Rahman, Farhan
    Abbod, Maysam F.
    Fan, Shou-Zen
    Shieh, Jiann-Shing
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 5047 - 5068
  • [49] Session Invariant EEG Signatures using Elicitation Protocol Fusion and Convolutional Neural Network
    Debie, Essam
    Moustafa, Nour
    Vasilakos, Athanasios
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (04) : 2488 - 2500
  • [50] Deep Convolutional Neural Network for Automated Detection of Mind Wandering using EEG Signals
    Hosseini, Seyedroohollah
    Guo, Xuan
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 314 - 319