Visually Evoked Potential for EEG Biometrics using Convolutional Neural Network

被引:0
|
作者
Das, Rig [1 ]
Maiorana, Emanuele [1 ]
Campisi, Patrizio [1 ]
机构
[1] Roma Tre Univ, Dept Engn, Sect Appl Elect, Via Vito Volterra 62, I-00146 Rome, Italy
来源
2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2017年
关键词
Electroencephalography; Visually evoked potential; Convolutional neural network; CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we investigate the performance of electroencephalographic (EEG) signals, elicited by means of visual stimuli, for biometric identification. A deep learning method such as convolutional neural network (CNN), is used for automatic discriminative feature extraction and individual identification. Experiments are performed on a longitudinal database comprising of EEG data acquired from 40 subjects over two distinct sessions separated by a week time. The experimental results testify the existence of repeatable discriminative characteristics in individuals' EEG signals.
引用
收藏
页码:951 / 955
页数:5
相关论文
共 50 条
  • [31] EEG based depression recognition using improved graph convolutional neural network
    Zhu, Jing
    Jiang, Changting
    Chen, Junhao
    Lin, Xiangbin
    Yu, Ruilan
    Li, Xiaowei
    Bin Hu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [32] Applying Common Spatial Pattern and Convolutional Neural Network to Classify Movements via EEG Signals
    Zolfaghari, Sepideh
    Rezaii, Tohid Yousefi
    Meshgini, Saeed
    CLINICAL EEG AND NEUROSCIENCE, 2024, 55 (04) : 486 - 495
  • [33] EEG-Based Emotion Classification Using Improved Cross-Connected Convolutional Neural Network
    Dai, Jinxiao
    Xi, Xugang
    Li, Ge
    Wang, Ting
    BRAIN SCIENCES, 2022, 12 (08)
  • [34] Identification of Epileptic EEG Signals Using Convolutional Neural Networks
    Abiyev, Rahib
    Arslan, Murat
    Idoko, John Bush
    Sekeroglu, Boran
    Ilhan, Ahmet
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [35] Automated Rest EEG-Based Diagnosis of Depression and Schizophrenia Using a Deep Convolutional Neural Network
    Wang, Zhiming
    Feng, Jingwen
    Jiang, Rui
    Shi, Yujie
    Li, Xiaojing
    Xue, Rui
    Du, Xiangdong
    Ji, Mengqi
    Zhong, Fan
    Meng, Yajing
    Dong, Jingjing
    Zhang, Junpeng
    Deng, Wei
    IEEE ACCESS, 2022, 10 : 104472 - 104485
  • [36] Design and development of an indoor navigation system using denoising autoencoder based convolutional neural network for visually impaired people
    J. Akilandeswari
    G. Jothi
    A. Naveenkumar
    R. S. Sabeenian
    P. Iyyanar
    M. E. Paramasivam
    Multimedia Tools and Applications, 2022, 81 : 3483 - 3514
  • [37] Design and development of an indoor navigation system using denoising autoencoder based convolutional neural network for visually impaired people
    Akilandeswari, J.
    Jothi, G.
    Naveenkumar, A.
    Sabeenian, R. S.
    Iyyanar, P.
    Paramasivam, M. E.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (03) : 3483 - 3514
  • [38] Fish Recognition Using Convolutional Neural Network
    Ding, Guoqing
    Song, Yan
    Guo, Jia
    Feng, Chen
    Li, Guangliang
    He, Bo
    Yan, Tianhong
    OCEANS 2017 - ANCHORAGE, 2017,
  • [39] Melanoma Detection Using Convolutional Neural Network
    Zhang, Runyuan
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 75 - 78
  • [40] EEG Seizure Prediction Based on Empirical Mode Decomposition and Convolutional Neural Network
    Yan, Jianzhuo
    Li, Jinnan
    Xu, Hongxia
    Yu, Yongchuan
    Pan, Lexin
    Cheng, Xuerui
    Tan, Shaofeng
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 463 - 473