Visually Evoked Potential for EEG Biometrics using Convolutional Neural Network

被引:0
|
作者
Das, Rig [1 ]
Maiorana, Emanuele [1 ]
Campisi, Patrizio [1 ]
机构
[1] Roma Tre Univ, Dept Engn, Sect Appl Elect, Via Vito Volterra 62, I-00146 Rome, Italy
来源
2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2017年
关键词
Electroencephalography; Visually evoked potential; Convolutional neural network; CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we investigate the performance of electroencephalographic (EEG) signals, elicited by means of visual stimuli, for biometric identification. A deep learning method such as convolutional neural network (CNN), is used for automatic discriminative feature extraction and individual identification. Experiments are performed on a longitudinal database comprising of EEG data acquired from 40 subjects over two distinct sessions separated by a week time. The experimental results testify the existence of repeatable discriminative characteristics in individuals' EEG signals.
引用
收藏
页码:951 / 955
页数:5
相关论文
共 50 条
  • [21] Convolutional Neural Network for Target Face Detection using Single-trial EEG Signal
    Wang, Haofei
    Shi, Bertram E.
    Wang, Yiwen
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2008 - 2011
  • [22] A Convolutional Neural Network for the Detection of Asynchronous Steady State Motion Visual Evoked Potential
    Zhang, Xin
    Xu, Guanghua
    Mou, Xiang
    Ravi, Aravind
    Li, Min
    Wang, Yiwen
    Jiang, Ning
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (06) : 1303 - 1311
  • [23] Braille Block Recognition Using Convolutional Neural Network and Guide for Visually Impaired People
    Okamoto, Yoshiaki
    Shimono, Tomoyuki
    Tsuboi, Yuichi
    Izumi, Mayuko
    Takano, Yousuke
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 487 - 492
  • [24] ECG BIOMETRICS METHOD BASED ON CONVOLUTIONAL NEURAL NETWORK AND TRANSFER LEARNING
    Zhang, Yefei
    Zhao, Zhidong
    Guo, Chunwei
    Huang, Jingzhou
    Xu, Kaida
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 18 - 24
  • [25] A graph convolutional neural network for the automated detection of seizures in the neonatal EEG
    Raeisi, Khadijeh
    Khazaei, Mohammad
    Croce, Pierpaolo
    Tamburro, Gabriella
    Comani, Silvia
    Zappasodi, Filippo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 222
  • [26] HybridEEGNet: A Convolutional Neural Network for EEG Feature Learning and Depression Discrimination
    Wan, Zhijiang
    Huang, Jiajin
    Zhang, Hao
    Zhou, Haiyan
    Yang, Jie
    Zhong, Ning
    IEEE ACCESS, 2020, 8 (08): : 30332 - 30342
  • [27] Emotion recognition with convolutional neural network and EEG-based EFDMs
    Wang, Fei
    Wu, Shichao
    Zhang, Weiwei
    Xu, Zongfeng
    Zhang, Yahui
    Wu, Chengdong
    Coleman, Sonya
    NEUROPSYCHOLOGIA, 2020, 146
  • [28] Motor Imagery EEG Signal Classification Using Optimized Convolutional Neural Network
    Thiyam, Deepa Beeta
    Raymond, Shelishiyah
    Avasarala, Padmanabha Sarma
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (08): : 273 - 279
  • [29] Decoding Multi-Class EEG Signals of Hand Movement Using Multivariate Empirical Mode Decomposition and Convolutional Neural Network
    Tao, Yi
    Xu, Weiwei
    Wang, Guangming
    Yuan, Ziwen
    Wang, Maode
    Houston, Michael
    Zhang, Yingchun
    Chen, Badong
    Yan, Xiangguo
    Wang, Gang
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 2754 - 2763
  • [30] Deep Convolutional Neural Network Regularization for Alcoholism Detection Using EEG Signals
    Mukhtar, Hamid
    Qaisar, Saeed Mian
    Zaguia, Atef
    SENSORS, 2021, 21 (16)