Homology Cycles and Dependent Cycles of Hypergraphs

被引:0
作者
Wang, Jian-fang [1 ]
Xu, Xin [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] North China Univ Technol, Sch Sci, Beijing 100144, Peoples R China
基金
中国国家自然科学基金;
关键词
hypergraph; semilattice; cycle; maximal cycle; homology cycle;
D O I
10.1007/s10255-018-0749-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some new concepts for hypergraphs are introduced. Based on the previous results, we do further research on cycle structures of hypergraphs and construct a more strictly complete cycle structure system of hypergraphs.
引用
收藏
页码:237 / 248
页数:12
相关论文
共 13 条
[1]   ON THE DESIRABILITY OF ACYCLIC DATABASE SCHEMES [J].
BEERI, C ;
FAGIN, R ;
MAIER, D ;
YANNAKAKIS, M .
JOURNAL OF THE ACM, 1983, 30 (03) :479-513
[2]  
BERGE C, 1970, GRAPHS HYPERGRAPHS
[3]   Graph homotopy and Graham homotopy [J].
Chen, BF ;
Yau, ST ;
Yeh, YN .
DISCRETE MATHEMATICS, 2001, 241 (1-3) :153-170
[4]  
Gowers Timothy, 2008, The Princeton companion to mathematics
[5]   On the notion of cycles in hypergraphs [J].
Jegou, Philippe ;
Ndiaye, Samba Ndojh .
DISCRETE MATHEMATICS, 2009, 309 (23-24) :6535-6543
[7]  
Li Haizhu, 2000, J SYSTEM SCI SYSTEM, V9, P245
[8]   SIMPLE LINEAR-TIME ALGORITHMS TO TEST CHORDALITY OF GRAPHS, TEST ACYCLICITY OF HYPERGRAPHS, AND SELECTIVELY REDUCE ACYCLIC HYPERGRAPHS [J].
TARJAN, RE ;
YANNAKAKIS, M .
SIAM JOURNAL ON COMPUTING, 1984, 13 (03) :566-579
[9]  
WANG J, 2008, INFORM HYPERGRAPH TH
[10]  
WANG J, 2005, ACTA MATH APPL SIN-E, V21, P495