Fractional motions

被引:93
作者
Eliazar, Iddo I. [1 ]
Shlesinger, Michael F. [2 ]
机构
[1] Holon Inst Technol, IL-58102 Holon, Israel
[2] Off Naval Res, Arlington, VA 22203 USA
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2013年 / 527卷 / 02期
关键词
Brownian motion; Fractional Brownian motion; Levy motion; Fractional Levy motion; Langevin's equation; Random walks; Scaling limits; Universality; Noah exponent; Noah effect; Joseph exponent; Joseph effect; Sub-diffusion; Super-diffusion; Short-range correlations; Long-range correlations; Fractal trajectories; Selfsimilarity; Hurst exponent; LONG-RANGE CORRELATIONS; FRACTAL STREAM CHEMISTRY; LEVY MOTION; ANOMALOUS DIFFUSION; RANDOM-WALKS; CONFORMATIONAL PROPERTIES; ENHANCED DIFFUSION; KINETIC-THEORY; SCALING LAWS; DYNAMICS;
D O I
10.1016/j.physrep.2013.01.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the "Noah effect"), nor long-range correlations (the "Joseph effect"). The quintessential model for processes displaying the Noah effect is Levy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Levy motion. In this paper we review these four random-motion models - henceforth termed "fractional motions" - via a unified physical setting that is based on Langevin's equation, the Einstein-Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts according to microscopic-level details - which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents a "Noah exponent" governing their fluctuations, and a "Joseph exponent" governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 129
页数:29
相关论文
共 50 条
  • [21] Fractional Brownian motions in a limit of turbulent transport
    Fannjiang, A
    Komorowski, T
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (04) : 1100 - 1120
  • [22] On the Collision Local Time of Fractional Brownian Motions*
    Yiming Jiang
    Yongjin Wang
    Chinese Annals of Mathematics, Series B, 2007, 28 : 311 - 320
  • [23] Inverse problems for the fractional diffusion equation driven by fractional Brownian sheet
    Lei, Shuangdi
    Fan, Hongtao
    Li, Yajing
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [24] FRACTIONAL CABLE EQUATION MODELS FOR ANOMALOUS ELECTRODIFFUSION IN NERVE CELLS: FINITE DOMAIN SOLUTIONS
    Langlands, T. A. M.
    Henry, B. I.
    Wearne, S. L.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (04) : 1168 - 1203
  • [25] Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts
    Watkins, N. W.
    Credgington, D.
    Sanchez, R.
    Rosenberg, S. J.
    Chapman, S. C.
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [26] From N parameter fractional Brownian motions to N parameter multifractional Brownian motions
    Herbin, Erick
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (04) : 1249 - 1284
  • [27] Astrophysical Applications of Fractional Calculus
    Stanislavsky, Aleksander A.
    PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 63 - 78
  • [28] Fractional Dynamics at Multiple Times
    Meerschaert, Mark M.
    Straka, Peter
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (05) : 878 - 886
  • [29] Limit Theorems for Logarithmic Averages of Fractional Brownian Motions
    István Berkes
    Lajos Horváth
    Journal of Theoretical Probability, 1999, 12 : 985 - 1009
  • [30] Distribution dependent SDEs driven by fractional Brownian motions
    Fan, Xiliang
    Huang, Xing
    Suo, Yongqiang
    Yuan, Chenggui
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 151 : 23 - 67