Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

被引:58
作者
van Berkum, Susanne [1 ]
Dee, Joris T. [1 ]
Philipse, Albert P. [1 ]
Erne, Ben H. [1 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Vant Hoff Lab Phys & Colloid Chem, NL-3584 CH Utrecht, Netherlands
关键词
ferrohydrogel; hydrogel; ferrogel; poly(acrylic acid); iron oxide; cobalt ferrite; magnetic nanoparticles; magnetic susceptibility; Brownian relaxation; Neel relaxation; CONTROLLED-RELEASE; RELAXATION;
D O I
10.3390/ijms140510162
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Neel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.
引用
收藏
页码:10162 / 10177
页数:16
相关论文
共 44 条
[1]   Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit [J].
Andres Verges, M. ;
Costo, R. ;
Roca, A. G. ;
Marco, J. F. ;
Goya, G. F. ;
Serna, C. J. ;
Morales, M. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (13)
[2]  
[Anonymous], APPL PHYS LETT
[3]   Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles [J].
Astalan, AP ;
Ahrentorp, F ;
Johansson, C ;
Larsson, K ;
Krozer, A .
BIOSENSORS & BIOELECTRONICS, 2004, 19 (08) :945-951
[4]   Ripening during magnetite nanoparticle synthesis: Resulting interfacial defects and magnetic properties [J].
Barker, AJ ;
Cage, B ;
Russek, S ;
Stoldt, CR .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (06)
[5]   Monitoring gelation using magnetic nanoparticles [J].
Barrera, Carola ;
Florian-Algarin, Vivian ;
Acevedo, Aldo ;
Rinaldi, Carlos .
SOFT MATTER, 2010, 6 (15) :3662-3668
[6]   Finite-size effects in fine particles: magnetic and transport properties [J].
Batlle, X ;
Labarta, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (06) :R15-R42
[7]  
Chikazumi S., 1964, PHYS MAGNETISM JOHN, P554
[8]   Biological sensors based on Brownian relaxation of magnetic nanoparticles [J].
Chung, SH ;
Hoffmann, A ;
Bader, SD ;
Liu, C ;
Kay, B ;
Makowski, L ;
Chen, L .
APPLIED PHYSICS LETTERS, 2004, 85 (14) :2971-2973
[9]  
Cornell R.M., 1996, The Iron Oxides, P573
[10]   Low-frequency complex magnetic susceptibility of magnetic composite microspheres in colloidal dispersion [J].
Erne, Ben H. ;
Claesson, Maria ;
Sacanna, Stefano ;
Klokkenburg, Mark ;
Bakelaar, Emile ;
Kuipers, Bonny W. M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 311 (01) :145-149