Fractal dimensions and quantum evolution associated with sparse potential Jacobi matrices

被引:19
作者
Combes, JM [1 ]
Mantica, G [1 ]
机构
[1] CNRS Marseille Luminy, Ctr Phys Theor, Unite Propre Rech 7061, F-13288 Marseille, France
来源
LONG TIME BEHAVIOUR OF CLASSICAL AND QUANTUM SYSTEMS | 2001年 / 1卷
关键词
D O I
10.1142/9789812794598_0006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quantum dynamics generated via Schrodinger equation by sparse-potential Jacobi matrices on l(2)(Z(+)). Exact bounds for the upper and lower intermittency functions governing the asymptotic growth of moments are derived in terms of the fractal dimensions of the spectral measure. Numerical experiments suggest that these bounds are sharp in the case of very sparse barriers.
引用
收藏
页码:107 / 123
页数:17
相关论文
共 37 条
[1]   FRACTAL DYNAMICS OF ELECTRON WAVE-PACKETS IN ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS [J].
ABE, S ;
HIRAMOTO, H .
PHYSICAL REVIEW A, 1987, 36 (11) :5349-5352
[2]   LOCALIZATION AT LARGE DISORDER AND AT EXTREME ENERGIES - AN ELEMENTARY DERIVATION [J].
AIZENMAN, M ;
MOLCHANOV, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :245-278
[3]  
[Anonymous], DIFFERENTIAL EQUATIO
[4]   PHASE-DIAGRAM IN THE KICKED HARPER MODEL [J].
ARTUSO, R ;
BORGONOVI, F ;
GUARNERI, I ;
REBUZZINI, L ;
CASATI, G .
PHYSICAL REVIEW LETTERS, 1992, 69 (23) :3302-3305
[5]   FRACTAL AND DYNAMICAL PROPERTIES OF THE KICKED HARPER MODEL [J].
ARTUSO, R ;
CASATI, G ;
BORGONOVI, F ;
REBUZZINI, L ;
GUARNERI, I .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (03) :207-235
[6]   FRACTAL SPECTRUM AND ANOMALOUS DIFFUSION IN THE KICKED HARPER MODEL [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, D .
PHYSICAL REVIEW LETTERS, 1992, 68 (26) :3826-3829
[7]   Remarks on the relation between quantum dynamics and fractal spectra [J].
Barbaroux, JM ;
Combes, JM ;
Montcho, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) :698-722
[8]   Nonlinear variation of diffusion exponents in quantum dynamics [J].
Barbaroux, JM ;
Germinet, F ;
Tcheremchantsev, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (05) :409-414
[9]   ORTHOGONAL POLYNOMIALS ASSOCIATED TO ALMOST-PERIODIC SCHRODINGER-OPERATORS - A TREND TOWARDS RANDOM ORTHOGONAL POLYNOMIALS [J].
BESSIS, D ;
MANTICA, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 48 (1-2) :17-32
[10]   SPECTRAL STABILITY UNDER TUNNELING [J].
BRIET, P ;
COMBES, JM ;
DUCLOS, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (01) :133-156