Generalization of the Moore-Penrose inverse

被引:14
作者
Stojanovic, Katarina S. [1 ]
Mosic, Dijana [1 ]
机构
[1] Univ Nis, Fac Sci & Math, POB 224, Nish 18000, Serbia
关键词
Generalized Drazin inverse; Core-EP inverse; Moore-Penrose inverse; Hilbert space; CORE INVERSE; MATRICES; EXTENSION; OPERATOR;
D O I
10.1007/s13398-020-00928-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to extend the notation of the Moore-Penrose inverse from an operator with closed range to a generalized Drazin invertible operator, we present a new generalized inverse which is called the generalized Moore-Penrose inverse. We consider a number of characterizations and different representations of the generalized Moore-Penrose inverse. Inspired by these representations, we establish maximal classes of operators for which the representations of the generalized Moore-Penrose inverse are still valid. Some canonical forms for the generalized Moore-Penrose inverse are proved. The dual generalized Moore-Penrose inverse is defined and investigated too. Applying the generalized Moore-Penrose and dual generalized Moore-Penrose inverses, we solve some systems of linear equations.
引用
收藏
页数:16
相关论文
共 33 条
[1]  
[Anonymous], 2003, CMS books in Mathematics
[2]   Core inverse of matrices [J].
Baksalary, Oskar Maria ;
Trenkler, Goetz .
LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (06) :681-697
[3]   Expressions for the Moore-Penrose inverse of block matrices involving the Schur complement [J].
Castro-Gonzalez, N. ;
Martinez-Serrano, M. F. ;
Robles, J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 :353-368
[4]   On a new generalized inverse for Hilbert space operators [J].
Chen, Jianlong ;
Mosic, Dijana ;
Xu, Sanzhang .
QUAESTIONES MATHEMATICAE, 2020, 43 (09) :1331-1348
[5]   Mixed-type reverse order law, ternary powers and functional calculus [J].
Dincic, Nebojsa C. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
[6]   A class of outer generalized inverses [J].
Drazin, Michael P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) :1909-1923
[7]   PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS [J].
Du, Fapeng .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04) :100-114
[8]   Maximal classes of matrices determining generalized inverses [J].
Ferreyra, D. E. ;
Levis, F. E. ;
Thome, N. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 333 :42-52
[9]   Revisiting the core EP inverse and its extension to rectangular matrices [J].
Ferreyra, D. E. ;
Levis, F. E. ;
Thome, N. .
QUAESTIONES MATHEMATICAE, 2018, 41 (02) :265-281
[10]   OPERATOR RANGES [J].
FILLMORE, PA ;
WILLIAMS, JP .
ADVANCES IN MATHEMATICS, 1971, 7 (03) :254-&