Generalization of the Moore-Penrose inverse

被引:12
作者
Stojanovic, Katarina S. [1 ]
Mosic, Dijana [1 ]
机构
[1] Univ Nis, Fac Sci & Math, POB 224, Nish 18000, Serbia
关键词
Generalized Drazin inverse; Core-EP inverse; Moore-Penrose inverse; Hilbert space; CORE INVERSE; MATRICES; EXTENSION; OPERATOR;
D O I
10.1007/s13398-020-00928-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to extend the notation of the Moore-Penrose inverse from an operator with closed range to a generalized Drazin invertible operator, we present a new generalized inverse which is called the generalized Moore-Penrose inverse. We consider a number of characterizations and different representations of the generalized Moore-Penrose inverse. Inspired by these representations, we establish maximal classes of operators for which the representations of the generalized Moore-Penrose inverse are still valid. Some canonical forms for the generalized Moore-Penrose inverse are proved. The dual generalized Moore-Penrose inverse is defined and investigated too. Applying the generalized Moore-Penrose and dual generalized Moore-Penrose inverses, we solve some systems of linear equations.
引用
收藏
页数:16
相关论文
共 33 条
  • [1] [Anonymous], 2003, CMS books in mathematics
  • [2] Core inverse of matrices
    Baksalary, Oskar Maria
    Trenkler, Goetz
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (06) : 681 - 697
  • [3] Expressions for the Moore-Penrose inverse of block matrices involving the Schur complement
    Castro-Gonzalez, N.
    Martinez-Serrano, M. F.
    Robles, J.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 353 - 368
  • [4] On a new generalized inverse for Hilbert space operators
    Chen, Jianlong
    Mosic, Dijana
    Xu, Sanzhang
    [J]. QUAESTIONES MATHEMATICAE, 2020, 43 (09) : 1331 - 1348
  • [5] Mixed-type reverse order law, ternary powers and functional calculus
    Dincic, Nebojsa C.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [6] A class of outer generalized inverses
    Drazin, Michael P.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 1909 - 1923
  • [7] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS
    Du, Fapeng
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04): : 100 - 114
  • [8] Maximal classes of matrices determining generalized inverses
    Ferreyra, D. E.
    Levis, F. E.
    Thome, N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 333 : 42 - 52
  • [9] Revisiting the core EP inverse and its extension to rectangular matrices
    Ferreyra, D. E.
    Levis, F. E.
    Thome, N.
    [J]. QUAESTIONES MATHEMATICAE, 2018, 41 (02) : 265 - 281
  • [10] OPERATOR RANGES
    FILLMORE, PA
    WILLIAMS, JP
    [J]. ADVANCES IN MATHEMATICS, 1971, 7 (03) : 254 - &