Validity of Privacy-Protecting Analytical Methods That Use Only Aggregate-Level Information to Conduct Multivariable-Adjusted Analysis in Distributed Data Networks

被引:17
作者
Li, Xiaojuan [1 ,2 ]
Fireman, Bruce H. [3 ]
Curtis, Jeffrey R. [4 ]
Arterburn, David E. [5 ]
Fisher, David P. [6 ]
Moyneur, Erick [7 ]
Gallagher, Mia [1 ,2 ]
Raebel, Marsha A. [8 ]
Nowell, W. Benjamin [9 ]
Lagreid, Lindsay [10 ]
Toh, Sengwee [1 ,2 ]
机构
[1] Harvard Med Sch, Dept Populat Med, 401 Pk Dr,Suite 401 East, Boston, MA 02215 USA
[2] Harvard Pilgrim Hlth Care Inst, 401 Pk Dr,Suite 401 East, Boston, MA 02215 USA
[3] Kaiser Permanente Northern Calif, Div Res, Oakland, CA USA
[4] Univ Alabama Birmingham, Div Clin Immunol & Rheumatol, Sch Med, Birmingham, AL 35294 USA
[5] Kaiser Permanente Washington Hlth Res Inst, Seattle, WA USA
[6] Kaiser Permanente Northern Calif, Permanente Med Grp, Oakland, CA USA
[7] StatLog Econometr Inc, Montreal, PQ, Canada
[8] Kaiser Permanente Colorado, Inst Hlth Res, Denver, CO USA
[9] Global Hlth Living Fdn, CreakyJoints, Upper Nyack, NY USA
[10] Limeade, Bellevue, WA USA
基金
美国医疗保健研究与质量局; 美国国家卫生研究院;
关键词
confounding control; data-sharing; disease risk score; distributed data networks; meta-analysis; multicenter studies; privacy protection; propensity score; PROPENSITY SCORES; RISK; REGRESSION; SAFETY; ASSOCIATION; PERFORMANCE; INFECTIONS; WEIGHTS;
D O I
10.1093/aje/kwy265
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Distributed data networks enable large-scale epidemiologic studies, but protecting privacy while adequately adjusting for a large number of covariates continues to pose methodological challenges. Using 2 empirical examples within a 3-site distributed data network, we tested combinations of 3 aggregate-level data-sharing approaches (risk-set, summary-table, and effect-estimate), 4 confounding adjustment methods (matching, stratification, inverse probability weighting, and matching weighting), and 2 summary scores (propensity score and disease risk score) for binary and time-to-event outcomes. We assessed the performance of combinations of these data-sharing and adjustment methods by comparing their results with results from the corresponding pooled individual-level data analysis (reference analysis). For both types of outcomes, the method combinations examined yielded results identical or comparable to the reference results in most scenarios. Within each data-sharing approach, comparability between aggregate- and individual-level data analysis depended on adjustment method; for example, risk-set data-sharing with matched or stratified analysis of summary scores produced identical results, while weighted analysis showed some discrepancies. Across the adjustment methods examined, risk-set data-sharing generally performed better, while summary-table and effect-estimate data-sharing more often produced discrepancies in settings with rare outcomes and small sample sizes. Valid multivariable-adjusted analysis can be performed in distributed data networks without sharing of individual-level data.
引用
收藏
页码:709 / 723
页数:15
相关论文
共 42 条
[31]   Comparative-Effectiveness Research in Distributed Health Data Networks [J].
Toh, S. ;
Platt, R. ;
Steiner, J. F. ;
Brown, J. S. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2011, 90 (06) :883-887
[32]   Combining distributed regression and propensity scores: a doubly privacy-protecting analytic method for multicenter research [J].
Toh, Sengwee ;
Wellman, Robert ;
Coley, R. Yates ;
Horgan, Casie ;
Sturtevant, Jessica ;
Moyneur, Erick ;
Janning, Cheri ;
Pardee, Roy ;
Coleman, Karen J. ;
Arterburn, David ;
McTigue, Kathleen ;
Anau, Jane ;
Cook, Andrea J. .
CLINICAL EPIDEMIOLOGY, 2018, 10 :1773-1786
[33]   Privacy-preserving Analytic Methods for Multisite Comparative Effectiveness and Patient-centered Outcomes Research [J].
Toh, Sengwee ;
Shetterly, Susan ;
Powers, John D. ;
Arterburn, David .
MEDICAL CARE, 2014, 52 (07) :664-668
[34]  
Toh Sengwee, 2013, Pharmacoepidemiol Drug Saf, V22, P1171, DOI 10.1002/pds.3483
[35]   Confounding Adjustment in Comparative Effectiveness Research Conducted Within Distributed Research Networks [J].
Toh, Sengwee ;
Gagne, Joshua J. ;
Rassen, Jeremy A. ;
Fireman, Bruce H. ;
Kulldorff, Martin ;
Brown, Jeffrey S. .
MEDICAL CARE, 2013, 51 (08) :S4-S10
[36]   Comparative Risk for Angioedema Associated With the Use of Drugs That Target the Renin-Angiotensin-Aldosterone System [J].
Toh, Sengwee ;
Reichman, Marsha E. ;
Houstoun, Monika ;
Southworth, Mary Ross ;
Ding, Xiao ;
Hernandez, Adrian F. ;
Levenson, Mark ;
Li, Lingling ;
McCloskey, Carolyn ;
Shoaibi, Azadeh ;
Wu, Eileen ;
Zornberg, Gwen ;
Hennessy, Sean .
ARCHIVES OF INTERNAL MEDICINE, 2012, 172 (20) :1582-1589
[37]   Comparative safety of infliximab and etanercept on the risk of serious infections: does the association vary by patient characteristics? [J].
Toh, Sengwee ;
Li, Lingling ;
Harrold, Leslie R. ;
Bayliss, Elizabeth A. ;
Curtis, Jeffrey R. ;
Liu, Liyan ;
Chen, Lang ;
Grijalva, Carlos G. ;
Herrinton, Lisa J. .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2012, 21 (05) :524-534
[38]  
Walsh Kathleen E, 2013, Pharmacoepidemiol Drug Saf, V22, P1205, DOI 10.1002/pds.3505
[39]   Grid Binary LOgistic REgression (GLORE): building shared models without sharing data [J].
Wu, Yuan ;
Jiang, Xiaoqian ;
Kim, Jihoon ;
Ohno-Machado, Lucila .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2012, 19 (05) :758-764
[40]   Use of Stabilized Inverse Propensity Scores as Weights to Directly Estimate Relative Risk and Its Confidence Intervals [J].
Xu, Stanley ;
Ross, Colleen ;
Raebel, Marsha A. ;
Shetterly, Susan ;
Blanchette, Christopher ;
Smith, David .
VALUE IN HEALTH, 2010, 13 (02) :273-277