Minimum connected dominating sets and maximal independent sets in unit disk graphs

被引:138
作者
Wu, WL [1 ]
Du, HW
Jia, XH
Li, YS
Huang, SCH
机构
[1] Univ Texas, Dept Comp Sci, Richardson, TX 75083 USA
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[3] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30302 USA
基金
美国国家科学基金会;
关键词
connected dominating set; independent set; unit disk graphs;
D O I
10.1016/j.tcs.2005.08.037
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In ad hoc wireless networks, a connected dominating set can be used as a virtual backbone to improve the performance. Many constructions for approximating the minimum connected dominating set are based on the construction of a maximal independent set. The relation between the size mis(G) of a maximum independent set and the size cds(G) of a minimum connected dominating set in the same graph G plays an important role in establishing the performance ratio of those approximation algorithms. Previously, it is known that mis(G) <= 4 (.) cds(G) + 1 for all unit disk graphs G. In this paper, we improve it by showing mis(G) <= 3.8 (.) cds(G) + 1.2. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 14 条
  • [1] ALZOUBI KM, 2003, 23 IEEE INT C DISTR
  • [2] [Anonymous], P 3 ACM INT S MOB AD
  • [3] Bharghavan V., 1997, INT C COMM MONTR CAN
  • [4] CADEI M, 2002, P 6 INT C COMP SCI I
  • [5] Chen Y. P., 2002, P 3 ACM INT S MOB AD
  • [6] A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks
    Cheng, XZ
    Huang, X
    Li, DY
    Wu, WL
    Du, DZ
    [J]. NETWORKS, 2003, 42 (04) : 202 - 208
  • [7] MBONE - THE MULTICAST BACKBONE
    ERIKSSON, H
    [J]. COMMUNICATIONS OF THE ACM, 1994, 37 (08) : 54 - &
  • [8] MIN M, 2006, IN PRESS J GLOBAL OP
  • [9] A greedy approximation for minimum connected dominating sets
    Ruan, L
    Du, HW
    Jia, XH
    Wu, WL
    Li, YS
    Ko, K
    [J]. THEORETICAL COMPUTER SCIENCE, 2004, 329 (1-3) : 325 - 330
  • [10] Salhieh A., ICPP 2001, P156