Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo

被引:147
作者
Bhakat, KK
Mokkapati, SK
Boldogh, I
Hazra, TK
Mitra, S
机构
[1] Univ Texas, Med Branch, Sealy Ctr Mol Sci, Galveston, TX 77555 USA
[2] Univ Texas, Med Branch, Dept Human Biol Chem & Genet, Galveston, TX 77555 USA
[3] Univ Texas, Med Branch, Dept Microbiol & Immunol, Galveston, TX 77555 USA
关键词
D O I
10.1128/MCB.26.5.1654-1665.2006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human 8-oxoguanine-DNA glycosylase 1 (OGG1) is the major DNA glycosylase responsible for repair of 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened fapyguanine, critical mutagenic DNA lesions that are induced by reactive oxygen species. Here we show that OGG1 is acetylated by p300 in vivo predominantly at Lys338/Lys341. About 20% of OGG1 is present in acetylated form in HeLa cells. Acetylation significantly increases OGG1's activity in vitro in the presence of AP-endonuclease by reducing its affinity for the abasic (A-P) site product. The enhanced rate of repair of 8-oxoG in the genome by wild-type OGG1. but not the K338R/K34IR mutant, ectopically expressed in oxidatively stressed OGG1-null mouse embryonic fibroblasts, suggests that acetylation increases OGG1 activity in vivo. At the same time, acetylation of OGG1 was increased by about 2.5-fold after oxidative stress with no change at the polypeptide level. OGG1 interacts with class I histone deacetylases, which may be responsible for its deacetylation. Based on these results, we propose a novel regulatory function of OGG1 acetylation in repair of its substrates in oxidatively stressed cells.
引用
收藏
页码:1654 / 1665
页数:12
相关论文
共 66 条
  • [1] OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING
    AMES, BN
    SHIGENAGA, MK
    HAGEN, TM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) : 7915 - 7922
  • [2] The CBP co-activator is a histone acetyltransferase
    Bannister, AJ
    Kouzarides, T
    [J]. NATURE, 1996, 384 (6610) : 641 - 643
  • [3] Acetylation of the human DNA glycosylase NEIL2 and inhibition of its activity
    Bhakat, KK
    Hazra, TK
    Mitra, S
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 (10) : 3033 - 3039
  • [4] Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene
    Bhakat, KK
    Izumi, T
    Yang, SH
    Hazra, TK
    Mitra, S
    [J]. EMBO JOURNAL, 2003, 22 (23) : 6299 - 6309
  • [5] Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites
    Bjoras, M
    Luna, L
    Johnson, B
    Hoff, E
    Haug, T
    Rognes, T
    Seeberg, E
    [J]. EMBO JOURNAL, 1997, 16 (20) : 6314 - 6322
  • [6] The human OGG1 gene:: Structure, functions, and its implication in the process of carcinogenesis
    Boiteux, S
    Radicella, JP
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 377 (01) : 1 - 8
  • [7] FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE OF ESCHERICHIA-COLI - CLONING AND SEQUENCING OF THE FPG STRUCTURAL GENE AND OVERPRODUCTION OF THE PROTEIN
    BOITEUX, S
    OCONNOR, TR
    LAVAL, J
    [J]. EMBO JOURNAL, 1987, 6 (10) : 3177 - 3183
  • [8] hMYH cell cycle-dependent expression, subcellular localization and association with replication foci:: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs
    Boldogh, I
    Milligan, D
    Lee, MS
    Bassett, H
    Lloyd, RS
    McCullough, AK
    [J]. NUCLEIC ACIDS RESEARCH, 2001, 29 (13) : 2802 - 2809
  • [9] REACTIONS OF OXYL RADICALS WITH DNA
    BREEN, AP
    MURPHY, JA
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (06) : 1033 - 1077
  • [10] Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA
    Bruner, SD
    Norman, DPG
    Verdine, GL
    [J]. NATURE, 2000, 403 (6772) : 859 - 866