A linearly convergent derivative-free descent method for strongly monotone complementarity problems

被引:20
作者
Mangasarian, OL
Solodov, MV
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[2] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
基金
美国国家科学基金会;
关键词
complementarity problems; implicit Lagrangian; descent algorithms; derivative-free methods; linear convergence;
D O I
10.1023/A:1008752626695
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We establish the first rate of convergence result for the class of derivative-free descent methods for solving complementarity problems. The algorithm considered here is based on the implicit Lagrangian reformulation [26, 35] of the nonlinear complementarity problem, and makes use of the descent direction proposed in [42], but employs a different Armijo-type linesearch rule. We show that in the strongly monotone case, the iterates generated by the method converge globally at a linear rate to the solution of the problem.
引用
收藏
页码:5 / 16
页数:12
相关论文
共 43 条
[1]  
Cottle RW., 1992, LINEAR COMPLEMENTARI
[2]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[3]  
Dirkse Steven P., 1995, Optim. Methods Softw., V5, P123, DOI DOI 10.1080/10556789508805606
[4]  
Facchinei F, 1996, NONLINEAR OPTIMIZATION AND APPLICATIONS, P125
[5]   A new merit function for nonlinear complementarity problems and a related algorithm [J].
Facchinei, F ;
Soares, J .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (01) :225-247
[6]   On unconstrained and constrained stationary points of the implicit Lagrangian [J].
Facchinei, F ;
Kanzow, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (01) :99-115
[7]  
FERRIS M, 1994, RECENT ADV NONSMOOTH, P1
[8]  
FERRIS M C, 1997, COMPLEMENTARITY VARI
[9]  
Fischer A., 1995, RECENT ADV NONSMOOTH, P88
[10]  
FISCHER A, 1995, MATHNM101995 TU DRES