A Burgers equation-based constructive method for solving nonlinear evolution equations

被引:15
作者
Lü, ZS [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mechanizat, Beijing 100080, Peoples R China
基金
中国博士后科学基金;
关键词
D O I
10.1016/j.physleta.2005.12.087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inspired by the extended tanh function method and the direct method of symmetry reduction, we present a Burgers equation-based constructive method for solving nonlinear evolution equations (NLEEs). This method allows us to generate the solutions of NLEEs by the solutions of the Burgers equation. Applying this method to the NLEEs, we can obtain soliton-like solutions, multi-soliton-like solutions, formal periodic solutions and rational solutions, etc. We take the Boiti-Leon-Pempinelli equation as an example to illustrate the algorithm. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:158 / 160
页数:3
相关论文
共 22 条
[1]  
Ablowitz M., 1992, SOLITONS NONLINEAR E, Vsecond
[2]   INTEGRABLE TWO-DIMENSIONAL GENERALIZATION OF THE SINE-GORDON EQUATION AND SINH-GORDON EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (01) :37-49
[3]   Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long wave equation [J].
Chen, Y ;
Wang, Q .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :745-757
[4]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[5]   LINK BETWEEN SOLITARY WAVES AND PROJECTIVE RICCATI-EQUATIONS [J].
CONTE, R ;
MUSETTE, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21) :5609-5623
[6]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[7]   A new algebraic method for finding the line soliton solutions and doubly periodic wave solution to a two-dimensional perturbed KdV equation [J].
Fan, EG .
CHAOS SOLITONS & FRACTALS, 2003, 15 (03) :567-574
[8]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[10]   EXACT-SOLUTIONS FOR SOME COUPLED NONLINEAR EQUATIONS .2. [J].
HUIBIN, L ;
KELIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (18) :4097-4105