CMOS compatible polycrystalline silicon-germanium based pressure sensors

被引:14
|
作者
Gonzalez, Pilar [1 ,2 ]
Guo, Bin [1 ]
Rakowski, Michal [1 ]
De Meyer, Kristin [1 ,2 ]
Witvrouw, Ann [1 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, B-3001 Louvain, Belgium
关键词
Poly-SiGe; MEMS monolithic integration; Piezoresistivity; Capacitive; Pressure sensor; CMOS; POLY-SIGE; MEMS; TEMPERATURE; LAYERS; HF;
D O I
10.1016/j.sna.2011.12.018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work demonstrates, for the first time, the use of poly-SiGe for the fabrication of both piezoresistive and capacitive pressure sensors at CMOS-compatible temperatures. Despite the low processing temperature (455 degrees C), a sensitivity of 4.6 mV/V/bar for a membrane of 200 x 200 mu m(2) is reached by piezoresistor design optimization. The possibility of further enhancing the sensor sensitivity by tuning the piezoresistor's annealing time is investigated, leading to a 30% improvement. Single capacitive pressure sensors with sensitivities up to 73 fF/bar have been successfully fabricated. Annealing tests, performed at a fixed temperature of 455 degrees C with different annealing times, prove that the presented pressure sensor process flows are compatible with post-processing above 0.13 mu m Cu-backend CMOS devices. The increase in metal-to-metal contacts (more than 8% after 6h annealing), rather than transistor performance or degradation of the metal interconnects, is what limits the post-processing thermal budget. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
  • [41] On the role of germanium in porous silicon-germanium luminescence
    Amato, G
    Rossi, AM
    Boarino, L
    Brunetto, N
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1997, 76 (03): : 395 - 403
  • [42] Silicon-germanium nanostructures with high germanium concentration
    Sadofyev Y.G.
    Martovitsky V.P.
    Bazalevsky M.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2014, 78 (01) : 29 - 33
  • [43] AMORPHOUS SILICON-GERMANIUM ALLOYS
    WAGNER, S
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C444 - C444
  • [44] RF Silicon-Germanium circuits
    Bopp, M
    EDMO 2001: INTERNATIONAL SYMPOSIUM ON ELECTRON DEVICES FOR MICROWAVE AND OPTOELECTRONIC APPLICATIONS, 2001, : 167 - 173
  • [45] Silicon-germanium materials and devices
    Maiti, CK
    SOLID-STATE ELECTRONICS, 2001, 45 (11) : 1867 - 1868
  • [46] Silicon-Germanium: The Legacy Lives On
    Cook, Bruce
    ENERGIES, 2022, 15 (08)
  • [47] OXIDATION OF SILICON-GERMANIUM ALLOYS
    MARGALIT, S
    BARLEV, A
    AHARONI, H
    NEUGROSCHEL, A
    KUPER, AB
    JOURNAL OF CRYSTAL GROWTH, 1972, 17 (DEC) : 288 - +
  • [48] REACTION OF TITANIUM WITH GERMANIUM AND SILICON-GERMANIUM ALLOYS
    THOMAS, O
    DELAGE, S
    DHEURLE, FM
    SCILLA, G
    APPLIED PHYSICS LETTERS, 1989, 54 (03) : 228 - 230
  • [49] Silicon-germanium process technology
    Subbanna, S
    Ahlgren, D
    Harame, D
    Meyerson, B
    SILICON MATERIALS SCIENCE AND TECHNOLOGY, VOLS 1 AND 2, 1998, : 1406 - 1417
  • [50] Fabrication of Microbolometer Arrays Based on Polymorphous Silicon-Germanium
    Jimenez, Ricardo
    Moreno, Mario
    Torres, Alfonso
    Morales, Alfredo
    Ponce, Arturo
    Ferrusca, Daniel
    Rangel-Magdaleno, Jose
    Castro-Ramos, Jorge
    Hernandez-Perez, Julio
    Cano, Eduardo
    SENSORS, 2020, 20 (09)