Smart Metal-Polymer Bionanocomposites as Omnidirectional Plasmonic Black Absorber Formed by Nanofluid Filtration

被引:37
作者
Elbahri, Mady [1 ,2 ]
Homaeigohar, Shahin [1 ]
Abdelaziz, Ramzy [2 ]
Dai, Tianhe [1 ]
Khalil, Rania [2 ,3 ]
Zillohu, Ahnaf Usman [1 ]
机构
[1] Helmholtz Zentrum Geesthacht, Inst Polymer Res Nanochem & Nanoengn, D-21502 Geesthacht, Germany
[2] Univ Kiel, Fac Engn, Inst Mat Sci Nanochem & Nanoengn, D-24143 Kiel, Germany
[3] Zagazig Univ, Fac Sci, Dept Phys, Zagazig 44519, Egypt
关键词
plasmonic materials; black absorbers; nanofluids; filtration; bionanocomposites; nanofibers; ONE-STEP PREPARATION; THERMOPHOTOVOLTAIC GENERATION; OPTICAL-ABSORPTION; NANOPARTICLES; WATER; POLYACRYLONITRILE; NANOCOMPOSITES; PARTICLES; RESISTANT; MEMBRANES;
D O I
10.1002/adfm.201200768
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The first smart plasmonic absorber based on metal-polymer bionanocomposites performing via conformational changes of the biological functional agent, i.e., a protein, is introduced. Such a progress is done through bridging the gaps between nanofluid filtration, plasmonics, and bioswitching. Initially, a biofunctionalized nanofibrous membrane is developed that could filter out metal nanoparticles (<100 nm) from an aqueous stream with a high separation efficiency (97%). This approach brings about a breakthrough in applicability of the macroporous nanofibrous membranes for rejection of suspended nanosolids and extends the application area beyond microfiltration (MF) to ultrafiltration (UF). This operative filtration in the next step leads to a novel synthesis route for plasmonic materials as formation of a smart free-standing metalpolymer bionanocomposite able to act as an omnidirectional black absorber.
引用
收藏
页码:4771 / 4777
页数:7
相关论文
共 57 条
[1]   Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors [J].
Ahn, Y ;
Dunning, J ;
Park, J .
NANO LETTERS, 2005, 5 (07) :1367-1370
[2]   Hydrazine-induced thermo-reversible optical shifts in silver-gelatin bionanocomposites [J].
Aime, Carole ;
Rietveld, Ivo B. ;
Coradin, Thibaud .
CHEMICAL PHYSICS LETTERS, 2011, 505 (1-3) :37-41
[3]   The effect of hydrogen nanobubbles on the morphology of gold-gelatin bionanocomposite films and their optical properties [J].
Alsawafta, M. ;
Badilescu, S. ;
Vo-Van Truong ;
Packirisamy, M. .
NANOTECHNOLOGY, 2012, 23 (06)
[4]  
[Anonymous], 2008, Science News
[5]   Separation of micron to sub-micron particles from water: Electrospun nylon-6 nanofibrous membranes as pre-filters [J].
Aussawasathien, D. ;
Teerawattananon, C. ;
Vongachariya, A. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 315 (1-2) :11-19
[6]   Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites [J].
Bal, Smrutisikha .
MATERIALS & DESIGN, 2010, 31 (05) :2406-2413
[7]   Alginate-mediated growth of Co, Ni, and CoNi nanoparticles:: Influence of the biopolymer structure [J].
Brayner, Roberta ;
Vaulay, Marie-Josephe ;
Fievet, Fernand ;
Coradin, Thibaud .
CHEMISTRY OF MATERIALS, 2007, 19 (05) :1190-1198
[8]   SELF-SIMILAR PROPERTIES OF THE FAR-INFRARED AND OPTICAL-ABSORPTION OF FRACTAL METALLIC CLUSTERS [J].
BROUERS, F ;
RAUW, D ;
CLERC, JP ;
GIRAUD, G .
PHYSICAL REVIEW B, 1994, 49 (20) :14582-14588
[9]   Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles [J].
Cedervall, Tommy ;
Lynch, Iseult ;
Lindman, Stina ;
Berggard, Tord ;
Thulin, Eva ;
Nilsson, Hanna ;
Dawson, Kenneth A. ;
Linse, Sara .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2050-2055
[10]   PROTEIN-WATER INTERACTIONS AND FUNCTIONAL PROPERTIES [J].
CHOU, DH ;
MORR, CV .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1979, 56 (01) :A53-A62