Influence of TiO2 nanoparticles addition on the microstructural and mechanical properties of Sn0.7Cu nano-composite solder

被引:104
作者
Tsao, L. C. [1 ]
Huang, C. H. [2 ]
Chung, C. H. [1 ]
Chen, R. S. [2 ]
机构
[1] Natl Pingtung Univ Sci & Technol, Grad Inst Mat Engn, Neipu 91201, Pingtung, Taiwan
[2] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 701, Taiwan
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2012年 / 545卷
关键词
Sn0.7 Cu nano-composite solder; TiO2; nanoparticles; Mechanical property; Strengthening mechanisms; BGA PACKAGES; BONDING STRENGTHS; MICROHARDNESS;
D O I
10.1016/j.msea.2012.03.025
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composites of SC solder reinforced with 0,0.25,0.5 and 1 wt.% of TiO2 nanoparticles were fabricated using a mechanical technique. With increased addition of TiO2 nanoparticles, the SC nano-composite solder was found to have a slightly lower melting temperature. The addition of TiO2 nanoparticles can also effectively refine the microstructure as so beta-Sn and Cu6Sn5, and increase the percentage of eutectic area. The mechanical properties (microhardness, 0.2% YS and UTS) increase with the increasing presence of reinforcement, far exceeding the strength of the eutectic SC solder. The yield strength improvement was attributed to (i) the Hall-Petch effect due to beta-Sn grain size refinement. (ii) Orowan strengthening, (iii) generation of geometrically necessary dislocations to accommodate CTE mismatch between the matrix and the second phase (Cu6Sn5 and TiO2), and (iv) the load-bearing effects due to the presence of nano-sized reinforcements. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:194 / 200
页数:7
相关论文
共 32 条
[1]   Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites [J].
Cadek, M ;
Coleman, JN ;
Barron, V ;
Hedicke, K ;
Blau, WJ .
APPLIED PHYSICS LETTERS, 2002, 81 (27) :5123-5125
[2]  
Callister W. D., 2004, FUNDAMENTALS MAT SCI, P252
[3]   Effect of addition of TiO2 nanoparticles on the microstructure, microhardness and interfacial reactions of Sn3.5AgXCu solder [J].
Chang, S. Y. ;
Jain, C. C. ;
Chuang, T. H. ;
Feng, L. P. ;
Tsao, L. C. .
MATERIALS & DESIGN, 2011, 32 (10) :4720-4727
[4]   Intermetallic reactions in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Au/Ni surface finishes [J].
Chuang, TH ;
Yen, SF ;
Cheng, MD .
JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (02) :302-309
[5]   AgIn2/Ag2In transformations in an In-49Sn/Ag soldered joint under thermal aging [J].
Chuang, TH ;
Huang, YT ;
Tsao, LC .
JOURNAL OF ELECTRONIC MATERIALS, 2001, 30 (08) :945-950
[6]   Size-dependent inelastic behavior of particle-reinforced metal-matrix composites [J].
Dai, LH ;
Ling, Z ;
Bai, YL .
COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (08) :1057-1063
[7]  
Dieter G.E., 1986, Mechanical Metallurgy, V3rd, P325
[8]   Microstructure, kinetic analysis and hardness of Sn-Ag-Cu-1 wt% nano-ZrO2 composite solder on OSP-Cu pads [J].
Gain, Asit Kumar ;
Fouzder, Tama ;
Chan, Y. C. ;
Yung, Winco K. C. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (07) :3319-3325
[9]   High-temperature shear strength of lead-free Sn-Sb-Ag/Al2O3 composite solder [J].
Geranmayeh, A. R. ;
Mahmudi, R. ;
Kangooie, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (12) :3967-3972
[10]  
Kingery WD, 1975, INTRO CERAMICS, P594