Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress

被引:62
|
作者
Lopez de Andrade, Sara Adrian [1 ]
Domingues, Adilson Pereira, Jr. [1 ]
Mazzafera, Paulo [1 ]
机构
[1] Univ Estadual Campinas, Inst Biol, Dept Biol Vegetal, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Arbuscular mycorrhiza; Arsenic; Chlorophyll fluorescence; Photochemical metabolism; Rhizophagus irregularis; ACCUMULATION; CHLOROPHYLL; TOLERANCE; TRANSPORTERS; METABOLISM; TOXICITY; ROOTS; YIELD;
D O I
10.1016/j.chemosphere.2015.04.023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The metalloid arsenic (As) increases in agricultural soils because of anthropogenic activities and may have phytotoxic effects depending on the available concentrations. Plant performance can be improved by arbuscular mycorrhiza (AM) association under challenging conditions, such as those caused by excessive soil As levels. In this study, the influence of AM on CO2 assimilation, chlorophyll a fluorescence, SPAD-chlorophyll contents and plant growth was investigated in rice plants exposed to arsenate (MV) or arsenite (Ash!) and inoculated or not with Rhizophagus irregularis. Under AsV and Mill exposure, AM rice plants had greater biomass accumulation and relative chlorophyll content, increased water-use efficiency, higher carbon assimilation rate and higher stomatal conductance and transpiration rates than non-AM rice plants did. Chlorophyll a fluorescence analysis revealed significant differences in the response of AM-associated and -non-associated plants to As. Mycorrhization increased the maximum and actual quantum yields of photosystem II and the electron transport rate, maintaining higher values even under As exposure. Apart from the negative effects of MV and AsIII on the photosynthetic rates and PSI! efficiency in rice leaves, taken together, these results indicate that AM is able to sustain higher rice photosynthesis efficiency even under elevated As concentrations, especially when As is present as MV. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:141 / 149
页数:9
相关论文
共 50 条
  • [21] Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery
    Liu, T.
    Sheng, M.
    Wang, C. Y.
    Chen, H.
    Li, Z.
    Tang, M.
    PHOTOSYNTHETICA, 2015, 53 (02) : 250 - 258
  • [22] Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests
    Veresoglou, Stavros D.
    Wulf, Monika
    Rillig, Matthias C.
    ECOLOGY AND EVOLUTION, 2017, 7 (04): : 1181 - 1189
  • [23] Effects of Arbuscular Mycorrhizal Fungi on the Germination of Terminalia arjuna Plants Grown in Fly Ash Under Nursery Conditions
    Kumar, Rajesh
    Bhardwaj, Atul Kumar
    Chandra, K. K.
    FORESTIST, 2024, 74 (02): : 142 - 146
  • [24] Effects of arbuscular mycorrhizal fungi on photosynthesis, ion balance of tomato plants under saline-alkali soil condition
    Kong, Lei
    Gong, Xiaowen
    Zhang, Xiaolin
    Zhang, Wenze
    Sun, Jin
    Chen, Bolang
    JOURNAL OF PLANT NUTRITION, 2020, 43 (05) : 682 - 698
  • [25] Arbuscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growing under different irrigation conditions
    Josefina Bompadre, Maria
    Analia Silvani, Vanesa
    Fernandez Bidondo, Laura
    Del Carmen Rios de Molina, Maria
    Paula Colombo, Roxana
    Guillermo Pardo, Alejandro
    Margarita Godeas, Alicia
    BOTANY, 2014, 92 (03) : 187 - 193
  • [26] Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress
    Mohamed S. Sheteiwy
    Dina Fathi Ismail Ali
    You-Cai Xiong
    Marian Brestic
    Milan Skalicky
    Yousef Alhaj Hamoud
    Zaid Ulhassan
    Hiba Shaghaleh
    Hamada AbdElgawad
    Muhammad Farooq
    Anket Sharma
    Ahmed M. El-Sawah
    BMC Plant Biology, 21
  • [27] Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress
    Sheteiwy, Mohamed S.
    Ali, Dina Fathi Ismail
    Xiong, You-Cai
    Brestic, Marian
    Skalicky, Milan
    Hamoud, Yousef Alhaj
    Ulhassan, Zaid
    Shaghaleh, Hiba
    AbdElgawad, Hamada
    Farooq, Muhammad
    Sharma, Anket
    El-Sawah, Ahmed M.
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [28] Increasing atmospheric CO2 differentially supports arsenite stress mitigating impact of arbuscular mycorrhizal fungi in wheat and soybean plants
    AbdElgawad, Hamada
    El-Sawah, Ahmed M.
    Mohammed, Afrah E.
    Alotaibi, Modhi O.
    Yehia, Ramy S.
    Selim, Samy
    Saleh, Ahmed M.
    Beemster, Gerrit T. S.
    Sheteiwy, Mohamed S.
    CHEMOSPHERE, 2022, 296
  • [29] Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants
    Garcia-Sanchez, Mercedes
    Manuel Palma, Jose
    Antonio Ocampo, Juan
    Garcia-Romera, Inmaculada
    Aranda, Elisabet
    JOURNAL OF PLANT PHYSIOLOGY, 2014, 171 (06) : 421 - 428
  • [30] Salt stress response of Brachiaria plants with and without inoculation of arbuscular mycorrhizal fungi
    Mergulhao, ACES
    Burity, HA
    Tabosa, JN
    Figueiredo, MVB
    Maia, LC
    AGROCHIMICA, 2001, 45 (1-2): : 24 - 31