Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress

被引:62
|
作者
Lopez de Andrade, Sara Adrian [1 ]
Domingues, Adilson Pereira, Jr. [1 ]
Mazzafera, Paulo [1 ]
机构
[1] Univ Estadual Campinas, Inst Biol, Dept Biol Vegetal, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Arbuscular mycorrhiza; Arsenic; Chlorophyll fluorescence; Photochemical metabolism; Rhizophagus irregularis; ACCUMULATION; CHLOROPHYLL; TOLERANCE; TRANSPORTERS; METABOLISM; TOXICITY; ROOTS; YIELD;
D O I
10.1016/j.chemosphere.2015.04.023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The metalloid arsenic (As) increases in agricultural soils because of anthropogenic activities and may have phytotoxic effects depending on the available concentrations. Plant performance can be improved by arbuscular mycorrhiza (AM) association under challenging conditions, such as those caused by excessive soil As levels. In this study, the influence of AM on CO2 assimilation, chlorophyll a fluorescence, SPAD-chlorophyll contents and plant growth was investigated in rice plants exposed to arsenate (MV) or arsenite (Ash!) and inoculated or not with Rhizophagus irregularis. Under AsV and Mill exposure, AM rice plants had greater biomass accumulation and relative chlorophyll content, increased water-use efficiency, higher carbon assimilation rate and higher stomatal conductance and transpiration rates than non-AM rice plants did. Chlorophyll a fluorescence analysis revealed significant differences in the response of AM-associated and -non-associated plants to As. Mycorrhization increased the maximum and actual quantum yields of photosystem II and the electron transport rate, maintaining higher values even under As exposure. Apart from the negative effects of MV and AsIII on the photosynthetic rates and PSI! efficiency in rice leaves, taken together, these results indicate that AM is able to sustain higher rice photosynthesis efficiency even under elevated As concentrations, especially when As is present as MV. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:141 / 149
页数:9
相关论文
共 50 条
  • [11] A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress
    Chandrasekaran, Murugesan
    Boughattas, Sonia
    Hu, Shuijin
    Oh, Sang-Hyon
    Sa, Tongmin
    MYCORRHIZA, 2014, 24 (08) : 611 - 625
  • [12] Impact of Arbuscular Mycorrhizal Fungi on Photosynthesis, Water Status, and Gas Exchange of Plants Under Salt Stress-A Meta-Analysis
    Chandrasekaran, Murugesan
    Chanratana, Mak
    Kim, Kiyoon
    Seshadri, Sundaram
    Sa, Tongmin
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [13] Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress
    Zhu, X. Q.
    Tang, M.
    Zhang, H. Q.
    PHOTOSYNTHETICA, 2017, 55 (02) : 378 - 385
  • [14] Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress
    Zou, Y-N
    Wu, Q-S
    Kuca, K.
    PLANT BIOLOGY, 2021, 23 : 50 - 57
  • [15] Phosphate transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenate stress
    Chen, X. W.
    Wu, F. Y.
    Li, H.
    Chan, W. F.
    Wu, C.
    Wu, S. C.
    Wong, M. H.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2013, 87 : 92 - 99
  • [16] SALINITY STRESS IN PLANTS: CAN ARBUSCULAR MYCORRHIZAL FUNGI BE A PROMISING SOLUTION?
    Yu, J. L.
    Al-khayri, J. M.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024,
  • [17] Arbuscular mycorrhizal fungi and humic substances increased the salinity tolerance of rice plants
    Oliveira da Silva, Hellen Fernanda
    Huertas Tavares, Orlando Carlos
    da Silva, Lucas de Souza
    Zonta, Everaldo
    Ribeiro da Silva, Eliane Maria
    Saggin Junior, Orivaldo Jose
    Nobre, Camila Pinheiro
    Louro Berbara, Ricardo Luis
    Garcia, Andres Calderin
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2022, 44
  • [18] Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought
    Fouad, Mohamed O.
    Essahibi, Abdellatif
    Benhiba, Laila
    Qaddoury, Ahmed
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2014, 12 (03) : 763 - 771
  • [19] Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?
    Li, H.
    Ye, Z. H.
    Chan, W. F.
    Chen, X. W.
    Wu, F. Y.
    Wu, S. C.
    Wong, M. H.
    ENVIRONMENTAL POLLUTION, 2011, 159 (10) : 2537 - 2545
  • [20] Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress
    Yan, Zhengnan
    Ma, Tong
    Guo, Shaoxia
    Liu, Runjin
    Li, Min
    SCIENTIA HORTICULTURAE, 2021, 280