Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number

被引:28
|
作者
Gan, Yanbiao [1 ,2 ,3 ]
Xu, Aiguo [1 ]
Zhang, Guangcai [1 ]
Zhang, Ping [1 ]
Li, Yingjun [3 ]
机构
[1] Inst Appl Phys & Computat Math, Natl Key Lab Computat Phys, Beijing 100088, Peoples R China
[2] N China Inst Aerosp Engn, Langfang 065000, Peoples R China
[3] China Univ Min & Technol Beijing, State Key Lab GeoMech & Deep Underground Engn, SMCE, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL; SIMULATION; FLOWS;
D O I
10.1209/0295-5075/97/44002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effects of heat conduction, viscosity, and Prandtl number on thermal liquid-vapor separation via a lattice Boltzmann model for van der Waals fluids. The set of Minkowski measures on the density field enables to divide exactly the stages of the spinodal decomposition (SD) and domain growth. The duration t(SD) of the SD stage decreases with increasing the heat conductivity kappa(T) but increases with increasing the viscosity eta. The two relations can be fitted by t(SD) = a+ b/kappa(T) and t(SD) = c+ d eta +(e eta)(3), respectively, where a, b, c, d and e are fitting parameters. For fixed Prandtl number Pr, when eta is less than a critical value eta(c), t(SD) shows an inverse power-law relationship with eta. However, when eta > eta(c), t(SD) for Pr > 1 shows qualitatively different behavior. From the evolution of the Peclet number Pe, the separation procedure can also be divided into two stages. During the first stage, the convection effects become more dominant with time over those of the diffusivity, while they are reverse in the second stage. Copyright (C) EPLA, 2012
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Study of heat transfer in multilayered structure within the framework of dual-phase-lag heat conduction model using lattice Boltzmann method
    Ho, JR
    Kuo, CP
    Jiaung, WS
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (01) : 55 - 69
  • [42] Lattice Boltzmann simulation of phase separation under dynamic temperature and shear: Coupling effects of shear convection and thermal diffusion
    Wang Heping
    Geng Xingguo
    Li Xiaoguang
    Zang Duyang
    EUROPEAN PHYSICAL JOURNAL E, 2016, 39 (10):
  • [43] Lattice Boltzmann simulation of phase separation under dynamic temperature and shear: Coupling effects of shear convection and thermal diffusion
    Wang Heping
    Geng Xingguo
    Li Xiaoguang
    Zang Duyang
    The European Physical Journal E, 2016, 39
  • [44] A Lattice Boltzmann Study of Phase Separation in Liquid-Vapor Systems with Gravity
    Cristea, Artur
    Gonnella, Giuseppe
    Lamura, Antonio
    Sofonea, Victor
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (02) : 350 - 361
  • [45] Investigation of Prandtl number effect on natural convection MHD in an open cavity by lattice Boltzmann method
    Kefayati, GholamReza
    Gorji, Mofid
    Sajjadi, Hasan
    Ganji, Davood Domiri
    ENGINEERING COMPUTATIONS, 2013, 30 (01) : 97 - 116
  • [46] NUMERICAL SIMULATION OF HEAT CONDUCTION PROBLEMS WITH THE LATTICE BOLTZMANN METHOD (LBM) AND DISCRETE BOLTZMANN METHOD (DBM): A COMPARATIVE STUDY
    Chen, Leitao
    Petrosius, Timothy
    Schaefer, Laura
    PROCEEDINGS OF THE ASME 2020 HEAT TRANSFER SUMMER CONFERENCE (HT2020), 2020,
  • [47] Aptitude of a lattice Boltzmann method for evaluating transitional thresholds for low Prandtl number flows in enclosures
    El Ganaoui, Mohammed
    Djebali, R.
    COMPTES RENDUS MECANIQUE, 2010, 338 (02): : 85 - 96
  • [48] Thermal diffusivity, viscosity and prandtl number for molten iron and low carbon steel
    D. Ceotto
    High Temperature, 2013, 51 : 131 - 134
  • [49] Lattice Boltzmann model for compressible flows on standard lattices: Variable Prandtl number and adiabatic exponent
    Saadat, Mohammad Hossein
    Bosch, Fabian
    Karlinl, Ilya, V
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [50] Numerical study of thermal radiation heat transfer using lattice Boltzmann method
    Souai, Souhail
    Baakeem, Saleh S.
    Trabelsi, Soraya
    Sediki, Ezeddine
    Mohamad, Abdulmajeed
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2022, 82 (05) : 164 - 184