Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number

被引:28
|
作者
Gan, Yanbiao [1 ,2 ,3 ]
Xu, Aiguo [1 ]
Zhang, Guangcai [1 ]
Zhang, Ping [1 ]
Li, Yingjun [3 ]
机构
[1] Inst Appl Phys & Computat Math, Natl Key Lab Computat Phys, Beijing 100088, Peoples R China
[2] N China Inst Aerosp Engn, Langfang 065000, Peoples R China
[3] China Univ Min & Technol Beijing, State Key Lab GeoMech & Deep Underground Engn, SMCE, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL; SIMULATION; FLOWS;
D O I
10.1209/0295-5075/97/44002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effects of heat conduction, viscosity, and Prandtl number on thermal liquid-vapor separation via a lattice Boltzmann model for van der Waals fluids. The set of Minkowski measures on the density field enables to divide exactly the stages of the spinodal decomposition (SD) and domain growth. The duration t(SD) of the SD stage decreases with increasing the heat conductivity kappa(T) but increases with increasing the viscosity eta. The two relations can be fitted by t(SD) = a+ b/kappa(T) and t(SD) = c+ d eta +(e eta)(3), respectively, where a, b, c, d and e are fitting parameters. For fixed Prandtl number Pr, when eta is less than a critical value eta(c), t(SD) shows an inverse power-law relationship with eta. However, when eta > eta(c), t(SD) for Pr > 1 shows qualitatively different behavior. From the evolution of the Peclet number Pe, the separation procedure can also be divided into two stages. During the first stage, the convection effects become more dominant with time over those of the diffusivity, while they are reverse in the second stage. Copyright (C) EPLA, 2012
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number
    Gan Yan-Biao
    Xu Ai-Guo
    Zhang Guang-Cai
    Li Ying-Jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (03) : 490 - 498
  • [32] Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number
    甘延标
    许爱国
    张广财
    李英骏
    CommunicationsinTheoreticalPhysics, 2011, 56 (09) : 490 - 498
  • [33] Lattice Boltzmann Modeling of Thermal Conduction in Composites with Thermal Contact Resistance
    Xie, Chiyu
    Wang, Jinku
    Wang, Dong
    Pan, Ning
    Wang, Moran
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (04) : 1037 - 1055
  • [34] Lattice Boltzmann Modeling of Phonon Heat Conduction in Superlattice Structures
    San Martin, Cristian J.
    Guzman, Amador M.
    Escobar, Rodrigo A.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE 2010), VOL 10, 2012, : 363 - 370
  • [35] Lattice Boltzmann study on size effect with geometrical bending on phonon heat conduction in a nanoduct
    Jiaung, WS
    Ho, JR
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (03) : 958 - 966
  • [36] Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number
    Chen, Feng
    Xu, Aiguo
    Zhang, Guangcai
    Li, Yingjun
    Succi, Sauro
    EPL, 2010, 90 (05)
  • [37] Thermal effects connected to crystallization dynamics: A lattice Boltzmann study
    Tan, Q.
    Hosseini, S. A.
    Seidel-Morgenstern, A.
    Thevenin, D.
    Lorenz, H.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 171
  • [40] THE EFFECTS OF INCLINATION ANGLE AND PRANDTL NUMBER ON THE MIXED CONVECTION IN THE INCLINED LID DRIVEN CAVITY USING LATTICE BOLTZMANN METHOD
    Karimipour, Arash
    Nezhad, Alireza Hossein
    D'Orazio, Annunziata
    Shirani, Ebrahim
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2013, 51 (02) : 447 - 462