Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number

被引:28
|
作者
Gan, Yanbiao [1 ,2 ,3 ]
Xu, Aiguo [1 ]
Zhang, Guangcai [1 ]
Zhang, Ping [1 ]
Li, Yingjun [3 ]
机构
[1] Inst Appl Phys & Computat Math, Natl Key Lab Computat Phys, Beijing 100088, Peoples R China
[2] N China Inst Aerosp Engn, Langfang 065000, Peoples R China
[3] China Univ Min & Technol Beijing, State Key Lab GeoMech & Deep Underground Engn, SMCE, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL; SIMULATION; FLOWS;
D O I
10.1209/0295-5075/97/44002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effects of heat conduction, viscosity, and Prandtl number on thermal liquid-vapor separation via a lattice Boltzmann model for van der Waals fluids. The set of Minkowski measures on the density field enables to divide exactly the stages of the spinodal decomposition (SD) and domain growth. The duration t(SD) of the SD stage decreases with increasing the heat conductivity kappa(T) but increases with increasing the viscosity eta. The two relations can be fitted by t(SD) = a+ b/kappa(T) and t(SD) = c+ d eta +(e eta)(3), respectively, where a, b, c, d and e are fitting parameters. For fixed Prandtl number Pr, when eta is less than a critical value eta(c), t(SD) shows an inverse power-law relationship with eta. However, when eta > eta(c), t(SD) for Pr > 1 shows qualitatively different behavior. From the evolution of the Peclet number Pe, the separation procedure can also be divided into two stages. During the first stage, the convection effects become more dominant with time over those of the diffusivity, while they are reverse in the second stage. Copyright (C) EPLA, 2012
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Thermal lattice Boltzmann simulations of variable Prandtl number turbulent flows
    Soe, M
    Vahala, G
    Pavlo, P
    Vahala, L
    Chen, HD
    PHYSICAL REVIEW E, 1998, 57 (04): : 4227 - 4237
  • [2] Recovery of Galilean invariance in thermal lattice Boltzmann models for arbitrary Prandtl number
    Chen, Hudong
    Gopalakrishnan, Pradeep
    Zhang, Raoyang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (10):
  • [3] LATTICE BOLTZMANN SIMULATION OF THE PRANDTL NUMBER EFFECT ON THE PHASE CHANGE HEAT TRANSFER OF WAX IN PIPE-LINE
    Liu, Xiaoyan
    Kong, Lingxiang
    Zhou, Zheng
    Zhang, Huanyu
    She, Xinghui
    Jia, Vongying
    Xu, Ying
    Jiang, Hui
    THERMAL SCIENCE, 2024, 28 (3B): : 2641 - 2656
  • [4] Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization
    Gan, Yanbiao
    Xu, Aiguo
    Zhang, Guangcai
    Li, Yingjun
    Li, Hua
    PHYSICAL REVIEW E, 2011, 84 (04)
  • [5] An implicit lattice Boltzmann model for heat conduction with phase change
    Eshraghi, Mohsen
    Felicelli, Sergio D.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (9-10) : 2420 - 2428
  • [6] Lattice Boltzmann method for the heat conduction problem with phase change
    Jiaung, WS
    Ho, JR
    Kuo, CP
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2001, 39 (02) : 167 - 187
  • [7] Transport Phenomena Study of Low-Prandtl-Number Fluid Flow Using Thermal Lattice Boltzmann Technique
    Ahangar, Ehsan Kamali
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (11) : 14683 - 14695
  • [8] Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability
    Feng Chen
    Ai-Guo Xu
    Guang-Cai Zhang
    Frontiers of Physics, 2016, 11
  • [9] Effects of Reynolds and Prandtl Numbers on Heat Transfer Around a Circular Cylinder by the Simplified Thermal Lattice Boltzmann Model
    Chen, Qing
    Zhang, Xiaobing
    Zhang, Junfeng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (04) : 937 - 959
  • [10] Heat transfer of large Prandtl number fluids in porous media by a new lattice Boltzmann model
    Chen, Sheng
    Li, Wenhao
    Mohammed, Hayder, I
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 122